-
采用了Herriott型多通腔对高平均功率皮秒激光进行非线性压缩产生飞秒激光的脉冲宽度压缩系统, 并通过ABCD矩阵对腔内本征模式分布进行了求解计算. 实验上通过利用多通腔脉冲压缩装置将100 W钕离子激光器输出的脉冲光谱宽度从0.20 nm展宽到2.75 nm, 光谱展宽比为13.75, B积分累积总量接近15.6. 利用透射光栅将补偿色散后脉冲宽度从12.5 ps压缩到了780 fs, 脉冲压缩比为16, 最终输出功率为71.3 W, 装置整体效率为71.3%. 该装置提供了一种更加结构简单, 成本廉价的高平均功率飞秒激光产生方式.
-
关键词:
- 脉冲非线性压缩 /
- 光谱展宽 /
- Herriott型多通腔
The power of femtosecond lasers based on Ti: sapphire or Yb-doped gain media has reached a high level by using chirped pulse amplification. The dispersive elements are normally employed in CPA devices, thereby increasing the complexity and cost of the laser system. However, for the Nd-doped laser, its power can be amplified to hundreds of microjoules or even several millijoules directly without CPA technology. So compressing the picosecond pulse to obtain femtosecond laser pulses with hundreds of microjoules pulse energy by post-compression technology becomes meaningful. The pulsed post-compression technology is the combination of nonlinear spectral broadening and dispersion compensation. Currently, the most effective method of nonlinear spectral broadening is achieved through self-phase modulation. The multi-pass cell (MPC) device based on self-phase modulation for broadening spectral bandwidth has been extensively studied, since it was demonstrated. The MPC concept demonstrates significant practical benefits. Essentially, it requires only two curved mirrors and a Kerr medium in between, making it a cost-effective and easily implementable method. Moreover, the MPCs are robust, quite insensitive to beam pointing, and can evendeal with small mode mismatch without transmission losses. These favorable characteristics make MPCs very attractive not only for scientific applications, but also for commercial and facility laser systems where reliability is crucial. The striking progress of the technique in the past six years has made it possible to obtain high average power femtosecond laser. In this work, we demonstrate the generation of a high average power femtosecond laser pulse by nonlinearly compressing the picosecond pulse in the Herriott multi-pass cell device, and the distribution of eigenmode is analyzed. With this efficient and robust scheme, the spectrum is broadened from 0.20 nm to 2.75 nm, with a broadening ratio of 13.75, and the pulse duration of a picosecond amplifier is compressed from 1.25 ps to 780 fs, with a compression factor of 16. The average power before and after pulse compression are 100 W and 71.3 W respectively, so the overall transmission reaches 71.3%. The present scheme offers a viable route to low-cost and simple-configuration high-power femtosecond lasers driven by Nd-doped picosecond amplifiers. [1] Kawata S, Sun H B, Tanaka T, et al. 2001 Nature 412 697Google Scholar
[2] Saha S K, Wang D, Nguyen V H, Chang Y N, Oakdale J S, Chen S C 2019 Science 366 105Google Scholar
[3] Gan Z S, Cao Y Y, Evans R A, Gu M 2013 Nat. Commun. 4 2061Google Scholar
[4] 何飞, 程亚 2007 中国激光 34 595
He F, Cheng Y 2007 Chinese J. Lasers 34 595
[5] Zheng C, Hu A M, Kihm K D, et al. 2015 Small 11 3007Google Scholar
[6] Spence D E, Kean P N, Sibbett W 1991 Opt. Lett. 16 42Google Scholar
[7] Bagnoud V, Salin F 2000 Appl. Phys. B:Lasers Opt. 70 S165Google Scholar
[8] He P 2017 Ph. D. Dissertation (Xi'an: Xidian University) [何鹏 2017 博士学位论文 (西安: 西安电子科技大学)]
[9] 高清松, 胡浩, 裴正平, 童立新, 周唐建, 唐淳 2012 中国激光 39 7
Gao Q S, Hu H, Pei Z P, Tong L X, Zhou T J, Tang C 2012 Chinese J. Lasers 39 7
[10] 王海林, 董静, 刘贺言, 郝婧婕, 朱晓, 张金伟 2021 光子学报 50 117
Wang H L, Dong J, Liu H Y, Hao J J, Zhu X, Zhang J W 2021 Acta Photonica Sin. 50 117
[11] Nubbemeyer T, Kaumanns M, Ueffing M, Gorjan M, Alismail A, Fattahi H, Brons J, Pronin O, Barros H G, Major Z, Metzger T, Sutter D, Krausz F 2017 Opt. Lett. 42 1381Google Scholar
[12] Dietz T, Jenne M, Bauer D, Scharun M, Sutter D, Killi A 2020 Opt. Express 28 11415Google Scholar
[13] 董雪岩, 李平雪, 李舜, 王婷婷, 杨敏 2021 中国激光 48 41
Dong X Y, Li P X, Li Y, Wang T T, Yang M 2021 Chinese J. Lasers 48 41
[14] Khazanov E A 2022 Quantum Electron. 52 208Google Scholar
[15] Nagy T, Simon P, Veisz L 2021 Adv. Phys. :X 6 1845795
[16] Nisoli M, DeSilvestri S, Svelto O 1996 Appl. Phys. Lett. 68 2793Google Scholar
[17] Chen X W, Jullien A, Malvache A, et al. 2009 Opt. Lett. 34 1588Google Scholar
[18] Su Y B, Fang S B, Wang S, Liang Y Y, Chang G Q, He X K, Wei Z Y 2022 Appl. Phys. Lett. 120 121105Google Scholar
[19] Rolland C, Corkum P B 1988 J. Opt. Soc. Am. B 5 641Google Scholar
[20] Lu C H, Tsou Y J, Chen H Y, Chen B H, Cheng Y C, Yang S D, Chen M C, Hsu C C, Kung A H 2014 Optica 1 400Google Scholar
[21] Shaykin A, Ginzburg V, Yakovlev I, et al. 2021 High Power Laser Sci. Eng. 9 e54Google Scholar
[22] Viotti A L, Seidel M, Escoto E, Rajhans S, Leemans W P, Hartl I, Heyl C M 2022 Optica 9 197Google Scholar
[23] Hanna M, Delen X, Lavenu L, Guichard F, Zaouter Y, Druon F, Georges P 2017 J. Opt. Soc. Am. B 34 1340Google Scholar
[24] Kaumanns M, Kormin D, Nubbemeyer T, Pervak V, Karsch S 2021 Opt. Lett. 46 929Google Scholar
[25] Schulte J, Sartorius T, Weitenberg J, Vernaleken A, Russbueldt P 2016 Opt. Lett. 41 4511Google Scholar
[26] Herriott D, Kompfner R, Kogelnik H 1964 Appl. Optics 3 523Google Scholar
[27] Kaumanns M, Pervak V, Kormin D, Leshchenko V, Kessel A, Ueffing M, Chen Y, Nubbemeyer T 2018 Opt. Lett. 43 5877Google Scholar
[28] Balla P, Bin Wahid A, Sytcevich I, et al. 2020 Opt. Lett. 45 2572Google Scholar
-
-
[1] Kawata S, Sun H B, Tanaka T, et al. 2001 Nature 412 697Google Scholar
[2] Saha S K, Wang D, Nguyen V H, Chang Y N, Oakdale J S, Chen S C 2019 Science 366 105Google Scholar
[3] Gan Z S, Cao Y Y, Evans R A, Gu M 2013 Nat. Commun. 4 2061Google Scholar
[4] 何飞, 程亚 2007 中国激光 34 595
He F, Cheng Y 2007 Chinese J. Lasers 34 595
[5] Zheng C, Hu A M, Kihm K D, et al. 2015 Small 11 3007Google Scholar
[6] Spence D E, Kean P N, Sibbett W 1991 Opt. Lett. 16 42Google Scholar
[7] Bagnoud V, Salin F 2000 Appl. Phys. B:Lasers Opt. 70 S165Google Scholar
[8] He P 2017 Ph. D. Dissertation (Xi'an: Xidian University) [何鹏 2017 博士学位论文 (西安: 西安电子科技大学)]
[9] 高清松, 胡浩, 裴正平, 童立新, 周唐建, 唐淳 2012 中国激光 39 7
Gao Q S, Hu H, Pei Z P, Tong L X, Zhou T J, Tang C 2012 Chinese J. Lasers 39 7
[10] 王海林, 董静, 刘贺言, 郝婧婕, 朱晓, 张金伟 2021 光子学报 50 117
Wang H L, Dong J, Liu H Y, Hao J J, Zhu X, Zhang J W 2021 Acta Photonica Sin. 50 117
[11] Nubbemeyer T, Kaumanns M, Ueffing M, Gorjan M, Alismail A, Fattahi H, Brons J, Pronin O, Barros H G, Major Z, Metzger T, Sutter D, Krausz F 2017 Opt. Lett. 42 1381Google Scholar
[12] Dietz T, Jenne M, Bauer D, Scharun M, Sutter D, Killi A 2020 Opt. Express 28 11415Google Scholar
[13] 董雪岩, 李平雪, 李舜, 王婷婷, 杨敏 2021 中国激光 48 41
Dong X Y, Li P X, Li Y, Wang T T, Yang M 2021 Chinese J. Lasers 48 41
[14] Khazanov E A 2022 Quantum Electron. 52 208Google Scholar
[15] Nagy T, Simon P, Veisz L 2021 Adv. Phys. :X 6 1845795
[16] Nisoli M, DeSilvestri S, Svelto O 1996 Appl. Phys. Lett. 68 2793Google Scholar
[17] Chen X W, Jullien A, Malvache A, et al. 2009 Opt. Lett. 34 1588Google Scholar
[18] Su Y B, Fang S B, Wang S, Liang Y Y, Chang G Q, He X K, Wei Z Y 2022 Appl. Phys. Lett. 120 121105Google Scholar
[19] Rolland C, Corkum P B 1988 J. Opt. Soc. Am. B 5 641Google Scholar
[20] Lu C H, Tsou Y J, Chen H Y, Chen B H, Cheng Y C, Yang S D, Chen M C, Hsu C C, Kung A H 2014 Optica 1 400Google Scholar
[21] Shaykin A, Ginzburg V, Yakovlev I, et al. 2021 High Power Laser Sci. Eng. 9 e54Google Scholar
[22] Viotti A L, Seidel M, Escoto E, Rajhans S, Leemans W P, Hartl I, Heyl C M 2022 Optica 9 197Google Scholar
[23] Hanna M, Delen X, Lavenu L, Guichard F, Zaouter Y, Druon F, Georges P 2017 J. Opt. Soc. Am. B 34 1340Google Scholar
[24] Kaumanns M, Kormin D, Nubbemeyer T, Pervak V, Karsch S 2021 Opt. Lett. 46 929Google Scholar
[25] Schulte J, Sartorius T, Weitenberg J, Vernaleken A, Russbueldt P 2016 Opt. Lett. 41 4511Google Scholar
[26] Herriott D, Kompfner R, Kogelnik H 1964 Appl. Optics 3 523Google Scholar
[27] Kaumanns M, Pervak V, Kormin D, Leshchenko V, Kessel A, Ueffing M, Chen Y, Nubbemeyer T 2018 Opt. Lett. 43 5877Google Scholar
[28] Balla P, Bin Wahid A, Sytcevich I, et al. 2020 Opt. Lett. 45 2572Google Scholar
计量
- 文章访问数: 3228
- PDF下载量: 122
- 被引次数: 0