搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

局部塑性变形下铁基金属玻璃的致密化和非均匀性增强

江双双 朱力 刘思楠 杨詹詹 兰司 王寅岗

引用本文:
Citation:

局部塑性变形下铁基金属玻璃的致密化和非均匀性增强

江双双, 朱力, 刘思楠, 杨詹詹, 兰司, 王寅岗

Densification and heterogeneity enhancement of Fe-based metallic glass under local plastic flow

Jiang Shuang-Shuang, Zhu Li, Liu Si-Nan, Yang Zhan-Zhan, Lan Si, Wang Yin-Gang
PDF
HTML
导出引用
  • 本文研究了经局部塑性变形后, Fe78Si9B13金属玻璃在原子尺度上的结构演变及其对合金显微硬度的影响. 借助砂纸作为传力的媒介, 充分放大了作用于带材表面上的等效压力, 发生塑性变形后合金表面产生了大量的剪切带. 基于倒空间和实空间的同步辐射X射线衍射分析, 在塑性变形后, 合金结构的致密度增大, 过剩自由体积被排出, 并由此揭示了Fe78Si9B13金属玻璃在短程及中程尺度上原子协同重排行为. 结合高分辨透射电子显微镜观察的结果, Fe78Si9B13金属玻璃在发生塑性变形后, 结构不均匀的程度将会加剧. 此外, 不同于单轴加载下金属玻璃的加工软化, Fe78Si9B13金属玻璃在发生局部塑性变形后, 维氏硬度增大, 表现出局部的加工硬化行为. 从自由体积的角度看, 合金表面的大量剪切带可能是由于剪切带影响区域的重叠和交叉发生相互作用, 并加速原子迁移, 使自由体积湮灭的速率大于产生速率.
    The atomic-scale structure and concomitant mechanical property evolution of a ribbon-shaped Fe78Si9B13 metallic glass after local plastic flow are investigated. By using abrasive papers as a medium to transport the pressure, the equivalent pressure on the ribbon surface is sufficiently magnified. Multiple shear bands pervading along their surface are generated simultaneously after deformation. The densification processes triggered by the cooperative atomic rearrangements in the short and medium-range are revealed by analyzing the synchrotron diffraction patterns in reciprocal space and real space. Meanwhile, the local plastic flow enhances the structural heterogeneity. In contrast to the strain-softening under uniaxial loading, these structural changes contribute to the improvement of resistance to subsequent deformation. As a result, the Vickers hardness of the deformed Fe78Si9B13 metallic glass increases compared with the undeformed sample, manifesting a local strain-hardening behavior.
      通信作者: 王寅岗, yingang.wang@nuaa.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51571115, 51871120)和江苏高校优势学科建设工程项目资助的课题
      Corresponding author: Wang Yin-Gang, yingang.wang@nuaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51571115, 51871120) and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China
    [1]

    Greer A L, Cheng Y Q, Ma E 2013 Mat. Sci. Eng. R 74 71Google Scholar

    [2]

    Pan J, Chen Q, Liu L, Li Y 2011 Acta Mater. 59 5146Google Scholar

    [3]

    Jang D, Greer J R 2010 Nat. Mater. 9 215Google Scholar

    [4]

    Pan J, Ivanov Y P, Zhou W H, Li Y, Greer A L 2020 Nature 578 559Google Scholar

    [5]

    Wang T, Si J J, Wu Y D, Lv K, Liu Y H, Hui X D 2018 Scripta Mater. 150 106Google Scholar

    [6]

    Spaepen F 1977 Acta Metall. 25 407Google Scholar

    [7]

    Dmowski W, Yokoyama Y, Chuang A, Ren Y, Umemoto M, Tsuchiya K, Inoue A, Egami T 2010 Acta Mater. 58 429Google Scholar

    [8]

    Rosner H, Peterlechner M, Kubel C, Schmidt V, Wilde G 2014 Ultramicroscopy 142 1Google Scholar

    [9]

    Shen L Q, Luo P, Hu Y C, Bai H Y, Sun Y H, Sun B A, Liu Y H, Wang W H 2018 Nat. Commun. 9 4414Google Scholar

    [10]

    Shahabi H S, Scudino S, Kaban I, Stoica M, Escher B, Menzel S, Vaughan G B M, Kühn U, Eckert J 2016 Acta Mater. 111 187Google Scholar

    [11]

    Ma E, Ding J 2016 Mater. Today 19 568Google Scholar

    [12]

    Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater. Sci. 104 250Google Scholar

    [13]

    Cubuk E D, Ivancic R J S, Schoenholz S S, et al. 2017 Science 358 1033Google Scholar

    [14]

    Wei D, Yang J, Jiang M Q, Wei B C, Wang Y J, Dai L H 2019 Phys. Rev. B 99 014115Google Scholar

    [15]

    Zhu F, Song S X, Reddy K M, Hirata A, Chen M W 2018 Nat. Commun. 9 3965Google Scholar

    [16]

    Li B S, Xie S H, Kruzic J J 2019 Acta Mater. 176 278Google Scholar

    [17]

    Wakeda M, Saida J 2019 Sci. Technol. Adv. Mater. 20 632Google Scholar

    [18]

    Kim H K, Ahn J P, Lee B J, Park K W, Lee J C 2018 Acta Mater. 157 209Google Scholar

    [19]

    Luo L S, Wang B B, Dong F Y, Su Y Q, Guo E Y, Xu Y J, Wang M Y, Wang L, Yu J X, Ritchie R O, Guo J J, Fu H Z 2019 Acta Mater. 171 216Google Scholar

    [20]

    Ebner C, Escher B, Gammer C, Eckert J, Pauly S, Rentenberger C 2018 Acta Mater. 160 147Google Scholar

    [21]

    Bian X L, Zhao D, Kim J T, Sopu D, Wang G, Pippan R, Eckert J 2019 Mater. Sci. Eng. A 752 36Google Scholar

    [22]

    Kovács Z, Schafler E, Kis V K, Szommer P J, Révész Á 2018 J. Non-Cryst. Solids 498 25Google Scholar

    [23]

    Dai J, Wang Y G, Yang L, Xia G T, Zeng Q S, Lou H B 2017 Scripta Mater. 127 88Google Scholar

    [24]

    Wang J G, Hu Y C, Guan P F, Song K K, Wang L, Wang G, Pan Y, Sarac B, Eckert J 2017 Sci. Rep. 7 7076Google Scholar

    [25]

    Taghvaei A H, Shirazifard N G, Ramasamy P, Bednarčik J, Eckert J 2018 J. Alloy. Compd. 748 553Google Scholar

    [26]

    Yüce E, Sarac B, Ketov S, Reissner M, Eckert J 2021 J. Alloy. Compd. 872 159620Google Scholar

    [27]

    Huang B, Ge T P, Liu G L, Luan J H, He Q F, Yuan Q X, Huang W X, Zhang K, Bai H Y, Shek C H, Liu C T, Yang Y, Wang W H 2018 Acta Mater. 155 69Google Scholar

    [28]

    Ma D, Stoica A D, Wang X L 2009 Nat. Mater. 8 30Google Scholar

    [29]

    Zeng Q S, Kono Y, Lin Y, Zeng Z D, Wang J Y, Sinogeikin S V, Park C, Meng Y, Yang W G, Mao H K, Mao W L 2014 Phys. Rev. Lett. 112 185502Google Scholar

    [30]

    Micoulaut M, Bauchy M 2013 Phys. Status Solidi B 250 976Google Scholar

    [31]

    Wu Z W, Li M Z, Wang W H, Liu K X 2015 Nat. Commun. 6 6035Google Scholar

    [32]

    Dmowski W, Iwashita T, Chuang C P, Almer J, Egami T 2010 Phys. Rev. Lett. 105 205502Google Scholar

    [33]

    Liu S N, Wang L F, Ge J C, Wu Z D, Ke Y B, Li Q, Sun B A, Feng T, Wu Y, Wang J T, Hahn H, Ren Y, Almer J D, Wang X L, Lan S 2020 Acta Mater. 200 42Google Scholar

    [34]

    Taghvaei A H, Shahabi H S, Bednarčik J, Eckert J 2015 J. Appl. Phys. 117 044902Google Scholar

    [35]

    Scudino S, Stoica M, Kaban I, Prashanth K G, Vaughan G B M, Eckert J 2015 J. Alloy. Compd. 639 465Google Scholar

    [36]

    Chen Z Q, Huang L, Wang F, Huang P, Lu T J, Xu K W 2016 Mater. Design 109 179Google Scholar

    [37]

    Zhu F, Hirata A, Liu P, Song S X, Tian Y, Han J H, Fujita T, Chen M W 2017 Phys. Rev. Lett. 119 215501Google Scholar

    [38]

    Jaafari Z, Seifoddini A, Hasani S 2019 Metall. Mater. Trans. A 50 2875Google Scholar

    [39]

    Sarac B, Ivanov Y P, Chuvilin A, Schoberl T, Stoica M, Zhang Z L, Eckert J 2018 Nat. Commun. 9 1333Google Scholar

    [40]

    Wang Z T, Pan J, Li Y, Schuh C A 2013 Phys. Rev. Lett. 111 135504Google Scholar

    [41]

    Stolpe M, Kruzic J J, Busch R 2014 Acta Mater. 64 231Google Scholar

    [42]

    Das J, Tang M B, Kim K B, Theissmann R, Baier F, Wang W H, Eckert J 2005 Phys. Rev. Lett. 94 205501Google Scholar

    [43]

    Bhowmick R, Raghavan R, Chattopadhyay K, Ramamurty U 2006 Acta Mater. 54 4221Google Scholar

    [44]

    Tong Y, Iwashita T, Dmowski W, Bei H, Yokoyama Y, Egami T 2015 Acta Mater. 86 240Google Scholar

    [45]

    Küchemann S, Liu C Y, Dufresne E M, Shin J, Maaß R 2018 Phys. Rev. B 97 014204Google Scholar

  • 图 1  (a) Fe78Si9B13非晶带施加载荷的示意图; (b) 砂纸的金相显微图像; (c) 样品变形前后的光学图片

    Fig. 1.  (a) Schematic diagram for the stress applying procedure of the Fe78Si9B13 amorphous ribbon; (b) metallographic microscope images of the abrasive paper; (c) optical picture of samples before and after deformation.

    图 2  (a)—(c) Fe78Si9B13金属玻璃在约5, 15和35 MPa载荷下的金相显微图像; (d)—(f) SEM图像, 插图为高倍放大的SEM图像

    Fig. 2.  (a)–(c) Metallographic microscope images and (d)–(f) SEM images of the Fe78Si9B13 metallic glasses subjected to about 5, 15, and 35 MPa, respectively. The insets are the SEM images with high magnification.

    图 3  (a) 样品变形前后的DSC曲线, 插图是样品Tc附近的放大图; (b) 不同样品总的释放焓的比较; (c) 各样品上所对应第二峰的位置

    Fig. 3.  (a) DSC curves of the samples before and after deformation, the inset is the enlargement near the Tc of samples; (b) comparison of the total enthalpy release on various samples; (c) the position of the corresponding second peak on various samples.

    图 4  (a) Fe78Si9B13金属玻璃的结构因子S(q), 插图是第一峰附近的局部放大曲线(数据沿S(q)轴进行了移动); (b) S(q)中第一个峰的峰位和FWHM; (c) Fe78Si9B13金属玻璃的约化对分布函数G(r), 其中虚线标记了特征峰的位置; (d) 通过减去未变形样品的数据得到的G(r)的差异; (e)获取随方位角变化的衍射图谱的示意图; (f) 由pseudo-Voigt函数拟合S(q)中第一个峰的峰位与方位角的函数, 插图是由正弦函数拟合得出的振幅

    Fig. 4.  (a) Structure factor S(q) of the Fe78Si9B13 metallic glasses, and the inset is the enlarged curves around the first peak (The data is shifted along S(q) axis for clarification); (b) peak position and FWHM of the first peak in S(q); (c) reduced pair distribution function G(r) of the Fe78Si9B13 metallic glasses, in which the dashed lines label the positions of characteristic peaks; (d) the difference in G(r) obtained by subtracting the data of the undeformed sample as a reference; (e) schematic diagram illustrating the acquisition of angular-dependent diffraction patterns; (f) position of the first peak in S(q) obtained from pseudo-Voigt function fitting as a function of angle, and the inset is the amplitude of oscillation derived from the sinusoidal function fitting.

    图 5  (a) 由G(r)曲线峰位置的相对位移确定的不同压力下Fe78Si9B13金属玻璃的体积应变ε; (b) ε随压力的变化

    Fig. 5.  (a) Volume strain ε of Fe78Si9B13 metallic glasses at various pressures determined from the relative displacement of the peak position of the G(r); (b) the variation of ε with pressure.

    图 6  Fe78Si9B13金属玻璃未变形(a)和变形(b)的HRTEM图像, 插图是相对应的FFT模式, 黄色的圆圈标出了低亮度的区域; Fe78Si9B13金属玻璃未变形(c)和变形(d)的环形暗场扫描TEM (ADF-STEM)图像

    Fig. 6.  HRTEM images of the undeformed (a) and deformed (b) Fe78Si9B13 metallic glasses. The insets are the corresponding FFT patterns, and the yellow circles mark the regions with low brightness. Annular dark-field scanning TEM (ADF-STEM) images of the undeformed (c) and deformed (d) Fe78Si9B13 metallic glasses.

    图 7  未变形(a)和变形(c) Fe78Si9B13金属玻璃压痕的金相显微镜图像; 未变形FSB-0试样(b)和FSB-35试样(d)的维氏硬度等值线图

    Fig. 7.  Metallographic microscope images of the indentations for the undeformed (a) and deformed (c) Fe78Si9B13 metallic glasses; Vickers hardness contour plots of the undeformed FSB-0 sample (b) and the FSB-35 sample (d).

    图 8  施加压力前后Fe78Si9B13金属玻璃的原子结构示意图

    Fig. 8.  Schematic of atomic structure for Fe78Si9B13 metallic glass before and after applying pressure.

  • [1]

    Greer A L, Cheng Y Q, Ma E 2013 Mat. Sci. Eng. R 74 71Google Scholar

    [2]

    Pan J, Chen Q, Liu L, Li Y 2011 Acta Mater. 59 5146Google Scholar

    [3]

    Jang D, Greer J R 2010 Nat. Mater. 9 215Google Scholar

    [4]

    Pan J, Ivanov Y P, Zhou W H, Li Y, Greer A L 2020 Nature 578 559Google Scholar

    [5]

    Wang T, Si J J, Wu Y D, Lv K, Liu Y H, Hui X D 2018 Scripta Mater. 150 106Google Scholar

    [6]

    Spaepen F 1977 Acta Metall. 25 407Google Scholar

    [7]

    Dmowski W, Yokoyama Y, Chuang A, Ren Y, Umemoto M, Tsuchiya K, Inoue A, Egami T 2010 Acta Mater. 58 429Google Scholar

    [8]

    Rosner H, Peterlechner M, Kubel C, Schmidt V, Wilde G 2014 Ultramicroscopy 142 1Google Scholar

    [9]

    Shen L Q, Luo P, Hu Y C, Bai H Y, Sun Y H, Sun B A, Liu Y H, Wang W H 2018 Nat. Commun. 9 4414Google Scholar

    [10]

    Shahabi H S, Scudino S, Kaban I, Stoica M, Escher B, Menzel S, Vaughan G B M, Kühn U, Eckert J 2016 Acta Mater. 111 187Google Scholar

    [11]

    Ma E, Ding J 2016 Mater. Today 19 568Google Scholar

    [12]

    Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater. Sci. 104 250Google Scholar

    [13]

    Cubuk E D, Ivancic R J S, Schoenholz S S, et al. 2017 Science 358 1033Google Scholar

    [14]

    Wei D, Yang J, Jiang M Q, Wei B C, Wang Y J, Dai L H 2019 Phys. Rev. B 99 014115Google Scholar

    [15]

    Zhu F, Song S X, Reddy K M, Hirata A, Chen M W 2018 Nat. Commun. 9 3965Google Scholar

    [16]

    Li B S, Xie S H, Kruzic J J 2019 Acta Mater. 176 278Google Scholar

    [17]

    Wakeda M, Saida J 2019 Sci. Technol. Adv. Mater. 20 632Google Scholar

    [18]

    Kim H K, Ahn J P, Lee B J, Park K W, Lee J C 2018 Acta Mater. 157 209Google Scholar

    [19]

    Luo L S, Wang B B, Dong F Y, Su Y Q, Guo E Y, Xu Y J, Wang M Y, Wang L, Yu J X, Ritchie R O, Guo J J, Fu H Z 2019 Acta Mater. 171 216Google Scholar

    [20]

    Ebner C, Escher B, Gammer C, Eckert J, Pauly S, Rentenberger C 2018 Acta Mater. 160 147Google Scholar

    [21]

    Bian X L, Zhao D, Kim J T, Sopu D, Wang G, Pippan R, Eckert J 2019 Mater. Sci. Eng. A 752 36Google Scholar

    [22]

    Kovács Z, Schafler E, Kis V K, Szommer P J, Révész Á 2018 J. Non-Cryst. Solids 498 25Google Scholar

    [23]

    Dai J, Wang Y G, Yang L, Xia G T, Zeng Q S, Lou H B 2017 Scripta Mater. 127 88Google Scholar

    [24]

    Wang J G, Hu Y C, Guan P F, Song K K, Wang L, Wang G, Pan Y, Sarac B, Eckert J 2017 Sci. Rep. 7 7076Google Scholar

    [25]

    Taghvaei A H, Shirazifard N G, Ramasamy P, Bednarčik J, Eckert J 2018 J. Alloy. Compd. 748 553Google Scholar

    [26]

    Yüce E, Sarac B, Ketov S, Reissner M, Eckert J 2021 J. Alloy. Compd. 872 159620Google Scholar

    [27]

    Huang B, Ge T P, Liu G L, Luan J H, He Q F, Yuan Q X, Huang W X, Zhang K, Bai H Y, Shek C H, Liu C T, Yang Y, Wang W H 2018 Acta Mater. 155 69Google Scholar

    [28]

    Ma D, Stoica A D, Wang X L 2009 Nat. Mater. 8 30Google Scholar

    [29]

    Zeng Q S, Kono Y, Lin Y, Zeng Z D, Wang J Y, Sinogeikin S V, Park C, Meng Y, Yang W G, Mao H K, Mao W L 2014 Phys. Rev. Lett. 112 185502Google Scholar

    [30]

    Micoulaut M, Bauchy M 2013 Phys. Status Solidi B 250 976Google Scholar

    [31]

    Wu Z W, Li M Z, Wang W H, Liu K X 2015 Nat. Commun. 6 6035Google Scholar

    [32]

    Dmowski W, Iwashita T, Chuang C P, Almer J, Egami T 2010 Phys. Rev. Lett. 105 205502Google Scholar

    [33]

    Liu S N, Wang L F, Ge J C, Wu Z D, Ke Y B, Li Q, Sun B A, Feng T, Wu Y, Wang J T, Hahn H, Ren Y, Almer J D, Wang X L, Lan S 2020 Acta Mater. 200 42Google Scholar

    [34]

    Taghvaei A H, Shahabi H S, Bednarčik J, Eckert J 2015 J. Appl. Phys. 117 044902Google Scholar

    [35]

    Scudino S, Stoica M, Kaban I, Prashanth K G, Vaughan G B M, Eckert J 2015 J. Alloy. Compd. 639 465Google Scholar

    [36]

    Chen Z Q, Huang L, Wang F, Huang P, Lu T J, Xu K W 2016 Mater. Design 109 179Google Scholar

    [37]

    Zhu F, Hirata A, Liu P, Song S X, Tian Y, Han J H, Fujita T, Chen M W 2017 Phys. Rev. Lett. 119 215501Google Scholar

    [38]

    Jaafari Z, Seifoddini A, Hasani S 2019 Metall. Mater. Trans. A 50 2875Google Scholar

    [39]

    Sarac B, Ivanov Y P, Chuvilin A, Schoberl T, Stoica M, Zhang Z L, Eckert J 2018 Nat. Commun. 9 1333Google Scholar

    [40]

    Wang Z T, Pan J, Li Y, Schuh C A 2013 Phys. Rev. Lett. 111 135504Google Scholar

    [41]

    Stolpe M, Kruzic J J, Busch R 2014 Acta Mater. 64 231Google Scholar

    [42]

    Das J, Tang M B, Kim K B, Theissmann R, Baier F, Wang W H, Eckert J 2005 Phys. Rev. Lett. 94 205501Google Scholar

    [43]

    Bhowmick R, Raghavan R, Chattopadhyay K, Ramamurty U 2006 Acta Mater. 54 4221Google Scholar

    [44]

    Tong Y, Iwashita T, Dmowski W, Bei H, Yokoyama Y, Egami T 2015 Acta Mater. 86 240Google Scholar

    [45]

    Küchemann S, Liu C Y, Dufresne E M, Shin J, Maaß R 2018 Phys. Rev. B 97 014204Google Scholar

  • [1] 辛勇, 包宏伟, 孙志鹏, 张吉斌, 刘仕超, 郭子萱, 王浩煜, 马飞, 李垣明. U1–xThxO2混合燃料力学性能的分子动力学模拟. 物理学报, 2021, 70(12): 122801. doi: 10.7498/aps.70.20202239
    [2] 江双双, 朱力, 刘思楠, 杨詹詹, 兰司, 王寅岗. 局部塑性变形下铁基金属玻璃的致密化和非均匀性增强. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211304
    [3] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [4] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟. 物理学报, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [5] 于海滨, 杨群. 超稳定玻璃. 物理学报, 2017, 66(17): 176108. doi: 10.7498/aps.66.176108
    [6] 王军强, 欧阳酥. 金属玻璃流变的扩展弹性模型. 物理学报, 2017, 66(17): 176102. doi: 10.7498/aps.66.176102
    [7] 马将, 杨灿, 龚峰, 伍晓宇, 梁雄. 金属玻璃的热塑性成型. 物理学报, 2017, 66(17): 176404. doi: 10.7498/aps.66.176404
    [8] 胡丽娜, 赵茜, 张春芝. 金属玻璃液体中的强脆转变现象. 物理学报, 2017, 66(17): 176403. doi: 10.7498/aps.66.176403
    [9] 陈治鹏, 马亚楠, 林雪玲, 潘凤春, 席丽莹, 马治, 郑富, 汪燕青, 陈焕铭. Nb掺杂-TiAl金属间化合物的电子结构与力学性能. 物理学报, 2017, 66(19): 196101. doi: 10.7498/aps.66.196101
    [10] 袁晨晨. 金属玻璃的键态特征与塑性起源. 物理学报, 2017, 66(17): 176402. doi: 10.7498/aps.66.176402
    [11] 王海燕, 胡前库, 杨文朋, 李旭升. 金属元素掺杂对TiAl合金力学性能的影响. 物理学报, 2016, 65(7): 077101. doi: 10.7498/aps.65.077101
    [12] 陈华, 李保卫, 赵鸣, 张雪峰, 贾晓林, 杜永胜. La3+存在形式对白云鄂博稀选尾矿微晶玻璃性能的影响. 物理学报, 2015, 64(19): 196201. doi: 10.7498/aps.64.196201
    [13] 喻利花, 马冰洋, 曹峻, 许俊华. (Zr,V)N复合膜的结构、力学性能及摩擦性能研究. 物理学报, 2013, 62(7): 076202. doi: 10.7498/aps.62.076202
    [14] 俞宇颖, 习锋, 戴诚达, 蔡灵仓, 谭华, 李雪梅, 胡昌明. 冲击加载下Zr51Ti5Ni10Cu25Al9金属玻璃的塑性行为. 物理学报, 2012, 61(19): 196202. doi: 10.7498/aps.61.196202
    [15] 陈艳, 蒋敏强, 戴兰宏. 金属玻璃温度依赖的拉压屈服不对称研究. 物理学报, 2012, 61(3): 036201. doi: 10.7498/aps.61.036201
    [16] 韩光, 羌建兵, 王清, 王英敏, 夏俊海, 朱春雷, 全世光, 董闯. 源于团簇-共振模型的理想金属玻璃电子化学势均衡. 物理学报, 2012, 61(3): 036402. doi: 10.7498/aps.61.036402
    [17] 徐春龙, 侯兆阳, 刘让苏. Ca70Mg30金属玻璃形成过程热力学、 动力学和结构特性转变机理的模拟研究. 物理学报, 2012, 61(13): 136401. doi: 10.7498/aps.61.136401
    [18] 张强, 户田裕之. 同步辐射K边减影成像及其在多孔金属材料中的应用. 物理学报, 2011, 60(11): 114103. doi: 10.7498/aps.60.114103
    [19] 易荣清, 杨国洪, 崔延莉, 杜华冰, 韦敏习, 董建军, 赵屹东, 崔明启, 郑 雷. 北京同步辐射3B3中能束线X射线探测系统性能研究. 物理学报, 2006, 55(12): 6287-6292. doi: 10.7498/aps.55.6287
    [20] 佟存柱, 郑萍, 白海洋, 陈兆甲, 雒建林, 张杰, 林德华, 汪卫华. 块体金属玻璃Zr_(48)Nb_8Cu_(12)Fe_8Be_(24)低温电阻的研究. 物理学报, 2002, 51(7): 1559-1563. doi: 10.7498/aps.51.1559
计量
  • 文章访问数:  3013
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-13
  • 修回日期:  2021-10-29
  • 上网日期:  2022-02-24
  • 刊出日期:  2022-03-05

/

返回文章
返回