搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

第一性原理方法研究N-Pr共掺杂ZnO的电子结构和光学性质

张丽丽 夏桐 刘桂安 雷博程 赵旭才 王少霞 黄以能

引用本文:
Citation:

第一性原理方法研究N-Pr共掺杂ZnO的电子结构和光学性质

张丽丽, 夏桐, 刘桂安, 雷博程, 赵旭才, 王少霞, 黄以能

Electronic and optical properties of n-pr co-doped anatase TiO2 from first-principles

Zhang Li-Li, Xia Tong, Liu Gui-An, Lei Bo-Cheng, Zhao Xu-Cai, Wang Shao-Xia, Huang Yi-Neng
PDF
导出引用
  • 作为一种稳定性好、抗辐射能力强、原材料丰富的宽禁带半导体,ZnO在光催化的研究领域中成为热点材料,但是其仅能吸收可见光中的紫光,因此如何扩大ZnO对可见光的响应范围是一个值得研究的问题.掺杂改性是解决这个问题的常用方法.基于以上考量,本文应用第一性原理计算方法研究了N与Pr掺杂对ZnO的电子结构和光学性质的影响.研究结果表明:共掺体系比单掺体系更容易形成,且共掺体系的稳定性随Pr浓度的增加先增强后变弱;同一体系的最短Zn–O键与最长Zn–O键的布居数比例随杂质浓度的增大先增大后减小,说明杂质的掺入对体系的晶格畸变有很大的影响,有利于光生空穴-电子对的分离,从而提高材料的光催化活性.N 2p态与Pr 4f态发生杂化对晶体的完整性产生了破坏,在杂质原子周围形成晶场,造成能级劈裂,带隙减小;介电函数虚部的主峰位均向低能区域移动,吸收光谱中各掺杂体系发生红移,各共掺体系随着杂质原子Pr浓度的增加,在可见光区的响应范围依次扩大,吸收能力也依次增加,说明N与Pr的共掺杂对提高ZnO的光催化性是有利的.
    ZnO is a wide bandgap semiconductor with the advantages of good stability, strong radiation resistance, and low cost. It has become a hot material in the field of photocatalysis, but it can only absorb purple light. Therefore, it is a valuable problem to study how to expand the response range of ZnO to visible light. Doping modification is a common method to solve this problem. In order to carry out the relevant research, the calculation in this paper are carried out by the CASTEP tool in Materials Studio software based on the first-principles of ultrasoft pseudopotential of density functional theory, the geometric structures of ZnO, Zn0.875Pr0.125O, ZnO0.875N0.125, Zn0.875Pr0.125O0.875N0.125, Zn0.75Pr0.25O0.875N0.125, Zn0.625Pr0.375O0.875N0.125 are constructed. All the models are based on the optimization of the geometry structure. By using the method of generalized gradient approximation plus U, we calculate the band structure, density of states, population, absorption spectra and dielectric functions of the models. The results show Co-doped system is easier to form than single-doped system, and the stability of the co-doped system increases first and then decreases with the increase of Pr concentration. The population ratio of the shortest Zn-O bond to the longest Zn-O bond in the same system increases first and then decreases with the impurity concentration, which shows that the doping of impurities has a great influence on the lattice distortion of the system, and the distortion is benefit for the separation of photogenerated hole-electron pairs. Therefore, the photocatalytic activity of the materials can be improved. Hybridization of N-2p and Pr-4f states destroys the integrity of crystals and forms crystal fields around impurity atoms, which results in splitting of energy levels and narrowing of bandgap. Compared with intrinsic ZnO, the static dielectric constant of all doped systems increases, especially the constant of Pr-N co-doped systems increases with the increase of doped Pr concentration, which indicates that the polarization ability of the co-doped systems increases with the increase of doped Pr atomic concentration. The main peaks of the dielectric function imaginary part of the doping systems move to the low energy region, and the absorption spectrums are red-shifted. As the concentration of impurity Pr atom increases, in the visible region, the absorption capacity of each co-doped system increases, their response range is enlarged in turn, showing the co-doping of N and Pr is benefit for improving the photocatalytic activity of ZnO.
    [1]

    Moon S C, Matsumura Y, Kitano M, Matsuoka M, Anpo M 2003 Res. Chem. Intermediat. 29 233

    [2]

    Zhou C, Lai C, Zhang C, Zeng G, Huang D, Cheng M, Hu L, Xiong W P, Chen M, Wang J J, Yang Y, Jiang L B 2018 Appl. Catal. B: Environ. 238 6

    [3]

    Zou J J, Chen C, Liu C J, Zhang Y P, Han Y, Cui L 2005 Mater. Lett. 59 3437

    [4]

    Fons P, Tampo H, Niki S, Kolobov A V, Ohkubo M, Tominaga J, Friedrich S, Carboni R, Boscherini F 2006 Nuclear Inst. & Methods in Physics Research B 246 75

    [5]

    Belaidi A, Dittrich T, Kieven D, Tornow J, Schwarzburg K, Kunst M, Allsop N, Lux-Steiner M C, Gavrilov S 2009 Sol. Energ. Mat. Sol. C. 93 1033

    [6]

    Krunks M, Katerski A, Dedova T, Acik I O, Mere A 2008 Sol. Energ. Mat. Sol. C. 92 1016

    [7]

    Look D C 2001 Mater. Sci. Eng. B 80 383

    [8]

    Rout C S, Krishna S H, Vivekchand S R C, Govindaraj A, Rao C N R 2006 Chem. Phys. Lett. 418 586

    [9]

    Zhang J M, Gao D, Xu K W 2012 Sci. China: Phys. Mech. 55 428

    [10]

    Lan W, Liu Y, Zhang M, Wang B, Yan H, Wang Y 2007 Mater. Lett. 61 2262

    [11]

    Li Y, Zhao X, Fan W 2015 J. Phys. Chem. C 115 3552

    [12]

    Yao Y, Cao Q 2013 Acta Metall. Sin: Engl. 26 467

    [13]

    Yu Y S, Kim G Y, Min B H, Kim S C 2004 J. Eur. Ceram. Soc. 24 1865

    [14]

    Zhang J M, Chen Z, Zhong K, Xu G, Huang Z 2014 Sci. Bull. 59 3232

    [15]

    Persson C, Platzerbjörkman C, Malmström J, Törndahl T, Edoff M 2006 Phys. Rev. Lett. 97 146403

    [16]

    Salah N, Hameed A, Aslam M, Abdel-Wahab M S, Babkair S S, Bahabri F S 2016 Chem. Eng. J. 291 115

    [17]

    Sharma S, Mehta S K, Kansal S K 2016 J. Alloy. Compd. 699 323

    [18]

    Chen L L, Lu J G, Ye Z Z, Lin Y M, Zhao B H, Ye Y M, Li J S, Zhu L P 2005 Appl. Phys. Lett. 87 2939

    [19]

    Chen J L, Devi N, Li N, Fu D J, Ke X W 2018 Chin. Phys. B 27 397

    [20]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K, Payne M C 2005 Zeitschrift fuer Kristallographie 220 567

    [21]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Mat. 14 2717

    [22]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [23]

    Pickett W E, Erwin S C, Ethridge E C 1998 Phys. Rev. B 58 1201

    [24]

    Jia X F, Hou Q Y, Xu Z C, Qu L F 2018 J. Magn. Magn. Mater. 465 128

    [25]

    Janotti A, van der Walle C G 2007 Phys. Rev. B 76 165202

    [26]

    Feng J, Xiao B, Wan C L, Qu Z X, Huang Z C, Chen J C, Zhou R, Pan W 2011 Acta Mater. 59 1742

    [27]

    Guo S, Hou Q, Xu Z, Zhao C 2016 Physica B 503 93

    [28]

    Li P, Deng S, Zhang L, Li Y, Yu J, Liu D 2010 Chinese J. Chem. Phys. 23 527

  • [1]

    Moon S C, Matsumura Y, Kitano M, Matsuoka M, Anpo M 2003 Res. Chem. Intermediat. 29 233

    [2]

    Zhou C, Lai C, Zhang C, Zeng G, Huang D, Cheng M, Hu L, Xiong W P, Chen M, Wang J J, Yang Y, Jiang L B 2018 Appl. Catal. B: Environ. 238 6

    [3]

    Zou J J, Chen C, Liu C J, Zhang Y P, Han Y, Cui L 2005 Mater. Lett. 59 3437

    [4]

    Fons P, Tampo H, Niki S, Kolobov A V, Ohkubo M, Tominaga J, Friedrich S, Carboni R, Boscherini F 2006 Nuclear Inst. & Methods in Physics Research B 246 75

    [5]

    Belaidi A, Dittrich T, Kieven D, Tornow J, Schwarzburg K, Kunst M, Allsop N, Lux-Steiner M C, Gavrilov S 2009 Sol. Energ. Mat. Sol. C. 93 1033

    [6]

    Krunks M, Katerski A, Dedova T, Acik I O, Mere A 2008 Sol. Energ. Mat. Sol. C. 92 1016

    [7]

    Look D C 2001 Mater. Sci. Eng. B 80 383

    [8]

    Rout C S, Krishna S H, Vivekchand S R C, Govindaraj A, Rao C N R 2006 Chem. Phys. Lett. 418 586

    [9]

    Zhang J M, Gao D, Xu K W 2012 Sci. China: Phys. Mech. 55 428

    [10]

    Lan W, Liu Y, Zhang M, Wang B, Yan H, Wang Y 2007 Mater. Lett. 61 2262

    [11]

    Li Y, Zhao X, Fan W 2015 J. Phys. Chem. C 115 3552

    [12]

    Yao Y, Cao Q 2013 Acta Metall. Sin: Engl. 26 467

    [13]

    Yu Y S, Kim G Y, Min B H, Kim S C 2004 J. Eur. Ceram. Soc. 24 1865

    [14]

    Zhang J M, Chen Z, Zhong K, Xu G, Huang Z 2014 Sci. Bull. 59 3232

    [15]

    Persson C, Platzerbjörkman C, Malmström J, Törndahl T, Edoff M 2006 Phys. Rev. Lett. 97 146403

    [16]

    Salah N, Hameed A, Aslam M, Abdel-Wahab M S, Babkair S S, Bahabri F S 2016 Chem. Eng. J. 291 115

    [17]

    Sharma S, Mehta S K, Kansal S K 2016 J. Alloy. Compd. 699 323

    [18]

    Chen L L, Lu J G, Ye Z Z, Lin Y M, Zhao B H, Ye Y M, Li J S, Zhu L P 2005 Appl. Phys. Lett. 87 2939

    [19]

    Chen J L, Devi N, Li N, Fu D J, Ke X W 2018 Chin. Phys. B 27 397

    [20]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K, Payne M C 2005 Zeitschrift fuer Kristallographie 220 567

    [21]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Mat. 14 2717

    [22]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [23]

    Pickett W E, Erwin S C, Ethridge E C 1998 Phys. Rev. B 58 1201

    [24]

    Jia X F, Hou Q Y, Xu Z C, Qu L F 2018 J. Magn. Magn. Mater. 465 128

    [25]

    Janotti A, van der Walle C G 2007 Phys. Rev. B 76 165202

    [26]

    Feng J, Xiao B, Wan C L, Qu Z X, Huang Z C, Chen J C, Zhou R, Pan W 2011 Acta Mater. 59 1742

    [27]

    Guo S, Hou Q, Xu Z, Zhao C 2016 Physica B 503 93

    [28]

    Li P, Deng S, Zhang L, Li Y, Yu J, Liu D 2010 Chinese J. Chem. Phys. 23 527

  • [1] 高旭东, 杨得草, 魏雯静, 李公平. 电子束对ZnO和TiO2辐照损伤的模拟计算. 物理学报, 2021, 70(23): 234101. doi: 10.7498/aps.70.20211223
    [2] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 物理学报, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [3] 徐佳楠, 陈焕铭, 潘凤春, 林雪玲, 马治, 陈治鹏. 氧化锌掺钡的电子结构及其铁电性能研究. 物理学报, 2018, 67(10): 107701. doi: 10.7498/aps.67.20172263
    [4] 唐欣月, 高红, 潘思明, 孙鉴波, 姚秀伟, 张喜田. 单根In掺杂ZnO纳米带场效应管的电学性质. 物理学报, 2014, 63(19): 197302. doi: 10.7498/aps.63.197302
    [5] 李铭杰, 高红, 李江禄, 温静, 李凯, 张伟光. 低温下单根ZnO纳米带电学性质的研究. 物理学报, 2013, 62(18): 187302. doi: 10.7498/aps.62.187302
    [6] 李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜. 第一性原理研究稀土掺杂ZnO结构的光电性质. 物理学报, 2013, 62(4): 047101. doi: 10.7498/aps.62.047101
    [7] 刘玮洁, 孙正昊, 黄宇欣, 冷静, 崔海宁. 不同价态稀土元素Yb掺杂ZnO的电子结构和光学性质. 物理学报, 2013, 62(12): 127101. doi: 10.7498/aps.62.127101
    [8] 鲍善永, 董武军, 徐兴, 栾田宝, 李杰, 张庆瑜. 氧分压对Mg掺杂ZnO薄膜结晶质量和光学特性的影响. 物理学报, 2011, 60(3): 036804. doi: 10.7498/aps.60.036804
    [9] 张富春, 张威虎, 董军堂, 张志勇. Cr掺杂ZnO纳米线的电子结构和磁性. 物理学报, 2011, 60(12): 127503. doi: 10.7498/aps.60.127503
    [10] 张宇飞, 郭志友, 曹东兴. ZnO(0001)表面吸附B的电子结构和光学性质研究. 物理学报, 2011, 60(6): 066802. doi: 10.7498/aps.60.066802
    [11] 袁娣, 黄多辉, 罗华峰, 王藩侯. Li, N双受主共掺杂实现p型ZnO的第一性原理研究. 物理学报, 2010, 59(9): 6457-6465. doi: 10.7498/aps.59.6457
    [12] 胡志刚, 段满益, 徐明, 周勋, 陈青云, 董成军, 令狐荣锋. Fe和Ni共掺杂ZnO的电子结构和光学性质. 物理学报, 2009, 58(2): 1166-1172. doi: 10.7498/aps.58.1166
    [13] 关丽, 李强, 赵庆勋, 郭建新, 周阳, 金利涛, 耿波, 刘保亭. Al和Ni共掺ZnO光学性质的第一性原理研究. 物理学报, 2009, 58(8): 5624-5631. doi: 10.7498/aps.58.5624
    [14] 毕艳军, 郭志友, 孙慧卿, 林 竹, 董玉成. Co和Mn共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [15] 段满益, 徐 明, 周海平, 陈青云, 胡志刚, 董成军. 碳掺杂ZnO的电子结构和光学性质. 物理学报, 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [16] 沈益斌, 周 勋, 徐 明, 丁迎春, 段满益, 令狐荣锋, 祝文军. 过渡金属掺杂ZnO的电子结构和光学性质. 物理学报, 2007, 56(6): 3440-3445. doi: 10.7498/aps.56.3440
    [17] 李 晖, 谢二庆, 张洪亮, 潘孝军, 张永哲. 火焰喷雾法合成ZnO和MgxZn1-xO纳米颗粒的光学性能研究. 物理学报, 2007, 56(6): 3584-3588. doi: 10.7498/aps.56.3584
    [18] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [19] 陈志权, 河裾厚男. He离子注入ZnO中缺陷形成的慢正电子束研究. 物理学报, 2006, 55(8): 4353-4357. doi: 10.7498/aps.55.4353
    [20] 刘学超, 施尔畏, 宋力昕, 张华伟, 陈之战. 固相反应法制备Co掺杂ZnO的磁性和光学性能研究. 物理学报, 2006, 55(5): 2557-2561. doi: 10.7498/aps.55.2557
计量
  • 文章访问数:  4239
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-14
  • 修回日期:  2018-11-28
  • 刊出日期:  2019-01-05

第一性原理方法研究N-Pr共掺杂ZnO的电子结构和光学性质

  • 1. 南京大学物理学院, 固体微结构物理国家重点实验室, 南京 210093;
  • 2. 伊犁师范学院物理科学与技术分院, 新疆凝聚态相变与微结构实验室, 新疆伊宁 835000

摘要: 作为一种稳定性好、抗辐射能力强、原材料丰富的宽禁带半导体,ZnO在光催化的研究领域中成为热点材料,但是其仅能吸收可见光中的紫光,因此如何扩大ZnO对可见光的响应范围是一个值得研究的问题.掺杂改性是解决这个问题的常用方法.基于以上考量,本文应用第一性原理计算方法研究了N与Pr掺杂对ZnO的电子结构和光学性质的影响.研究结果表明:共掺体系比单掺体系更容易形成,且共掺体系的稳定性随Pr浓度的增加先增强后变弱;同一体系的最短Zn–O键与最长Zn–O键的布居数比例随杂质浓度的增大先增大后减小,说明杂质的掺入对体系的晶格畸变有很大的影响,有利于光生空穴-电子对的分离,从而提高材料的光催化活性.N 2p态与Pr 4f态发生杂化对晶体的完整性产生了破坏,在杂质原子周围形成晶场,造成能级劈裂,带隙减小;介电函数虚部的主峰位均向低能区域移动,吸收光谱中各掺杂体系发生红移,各共掺体系随着杂质原子Pr浓度的增加,在可见光区的响应范围依次扩大,吸收能力也依次增加,说明N与Pr的共掺杂对提高ZnO的光催化性是有利的.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回