x

## 留言板

 引用本文:
 Citation:

## THE MUTUAL RELATION BETWEEN FRICTION-LINES AND PRESSURE DISTRIBUTION (IN ROLLING)

LIU SHU-I
PDF

#### Abstract

Frequently, it was thought that frictional slip would occur in the direction of least resistance, which was unfortunately taken as the direction of the shortest normal to the free boundary. In this paper, the condition of least resistance is accepted, but the direction of resistance is properly determined without assumption. The result is "the rule of gredient", that is, at a given point on the contact surface, the direction of least resistance is the direction of the gredient of unit friction τ, which is related to the unit pressure P and the coefficient of friction, f, by τ=fP, the gredient lines of τ and P coincide with each other. Consequently, the family of least resistance lines of friction is exactly the family of curves orthogonal to the pressure contours, and can be determined from the experimental surface distribution of pressure. One case of such friction-lines in rolling is presented, the curves bear remarkable resemblance to the under-evalu-ted "probable" lines of friction derived by siebel from deformation meassurements. The way to consider change in direction of τ in one-dimensional theory of rolling is to take an average friction line whose direction cosine, cos φ, vanishes at the neutral section according to the gredient rule. By doing so, f cos φ corresponds to the "coefficient of friction" which vanishes at the neutral section according to Brown's theory. The Karman's equation is written in the mean value form by taking τx=fP cos φ instead of τx=fP. The modified equation yields solutions smoothly continuous at the neutral section, and two such continuous solution to Karman's equation for the case of solid friction are presented, detailed investigation is left to another paper. By simple arguement, it is thought that the boundary of no-slip region should be a crossed curve given by a pressure contour which is a roop according to experimental results.The rule of gradient has already led to three concequences, and is expected to be a very useful relation for plasticity under compression, because up to this paper the differential equation for slip direction remains unknown.

#### 参考文献

 [1]

#### 施引文献

•  [1]
•  [1] 杨林, 胡林, 张兴刚. 二维晶格颗粒堆积中侧壁的压力分布与转向系数. 物理学报, 2015, 64(13): 134502. doi: 10.7498/aps.64.134502 [2] 梁修东, 台运娇, 程建民, 翟龙华, 许业军. 量子相空间分布函数与压缩相干态表示间的变换关系. 物理学报, 2015, 64(2): 024207. doi: 10.7498/aps.64.024207 [3] 周丽丹, 粟敬钦, 李平, 王文义, 刘兰琴, 张颖, 张小民. 高功率固体激光装置光学元件"缺陷"分布与光束近场质量的定量关系研究. 物理学报, 2011, 60(2): 024202. doi: 10.7498/aps.60.024202 [4] 黄锋, 邸洪双, 王广山. 用元胞自动机方法模拟镁合金薄带双辊铸轧过程凝固组织. 物理学报, 2009, 58(13): 313-S318. doi: 10.7498/aps.58.313 [5] 姜礼华, 刘福生, 田春玲. LiH晶体中离子间多体相互作用与高压下状态方程研究. 物理学报, 2008, 57(7): 4412-4416. doi: 10.7498/aps.57.4412 [6] 杨 强, 安振连, 郑飞虎, 张冶文. 线性低密度聚乙烯中空间电荷陷阱的能量分布与空间分布的关系. 物理学报, 2008, 57(6): 3834-3839. doi: 10.7498/aps.57.3834 [7] 江慧丰, 张青川, 陈学东, 范志超, 陈忠家, 伍小平. 位错与溶质原子间动态相互作用的数值模拟研究. 物理学报, 2007, 56(6): 3388-3392. doi: 10.7498/aps.56.3388 [8] 刘付德, 凌志远, 熊茂仁. 固体介质中电偶极子介电常数温度特性与能级密度分布关系. 物理学报, 1995, 44(8): 1302-1309. doi: 10.7498/aps.44.1302 [9] 陈徐宗, 刘亮, 王育竹. 驻波场中原子的跃迁速率与所受辐射压力的关系. 物理学报, 1993, 42(10): 1587-1594. doi: 10.7498/aps.42.1587 [10] 郑庆璋, 唐孟希, 胡恩科. 论引力波探测器方位与引力波源方位间的关系. 物理学报, 1990, 39(5): 685-692. doi: 10.7498/aps.39.685 [11] 王德宁, 王渭源. 化合物半导体中离子射程参数与化学键中离子特性间关系研究. 物理学报, 1989, 38(6): 923-930. doi: 10.7498/aps.38.923 [12] 何星飞, 莫党. n维固体带间光学性质与振子模型 n/2次积分关系. 物理学报, 1987, 36(12): 1624-1629. doi: 10.7498/aps.36.1624 [13] 马大猷, 李沛滋, 戴根华, 王宏玉. 湍流喷注噪声的压力关系. 物理学报, 1978, 27(2): 121-125. doi: 10.7498/aps.27.121 [14] 杨顺华. 位错环与点阵空位间的弹性相互作用. 物理学报, 1964, 20(8): 720-727. doi: 10.7498/aps.20.720 [15] 刘叔仪. 塑压摩擦线理论与平面压力分布问题之总解答. 物理学报, 1956, 12(6): 491-507. doi: 10.7498/aps.12.491 [16] 张青莲, 董履和. 重水在摄氏25°至100°间之密度. 物理学报, 1949, 7(4): 230-240. doi: 10.7498/aps.7.24 [17] 钱伟长. 长方滑板间之滑润理论. 物理学报, 1949, 7(4): 278-299. doi: 10.7498/aps.7.72-3 [18] 忻贤杰. 磷光体之磷光强度与处理温度之关系. 物理学报, 1947, 7(1): 54-55. doi: 10.7498/aps.7.54 [19] 杨振宁. 二元合金超格中原子相互作用能与格常数及原子排列之关系. 物理学报, 1944, 5(2): 138-149. doi: 10.7498/aps.5.138 [20] 林家翘. 在二元合金超格中,原子间相互作用之能量与其排列之关系. 物理学报, 1939, 3(2): 182-197. doi: 10.7498/aps.3.182
• 文章访问数:  6952
• PDF下载量:  617
• 被引次数: 0
##### 出版历程
• 收稿日期:  1955-02-23
• 刊出日期:  1956-01-20

/