搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

完整约束力学系统保Lie对称性差分格式

张宏彬 吕洪升 顾书龙

引用本文:
Citation:

完整约束力学系统保Lie对称性差分格式

张宏彬, 吕洪升, 顾书龙

The Lie point symmetry-preserving difference scheme of holonomic constrained mechanical systems

Zhang Hong-Bin, Lü Hong-Sheng, Gu Shu-Long
PDF
导出引用
  • 提出一种保完整约束力学系统Lie点对称性的差分格式.其具体做法是:首先求出完整约束力学系统的Lie点对称群,并将其延拓到离散的差分格点上;其次利用其特征方程找出独立的离散不变量;再应用独立的离散不变量来构造不变量的差分格式,且此差分格式在连续极限下应给出原系统的微分方程;最后给出一个例子,作为本文结果的说明.
    In this paper a Lie point symmetry- preserving difference schemes approximating holonomic constrained mechanical systems is presented. The procedure is as follows: Firstly we find the Lie point symmetry groups of the original equation, and prolong them to three points of the lattice. Secondly the discrete invariants are obtained by solving discrete characteristic equations, then the invariant difference scheme is constructed by using these discrete invariants; and this invariants difference scheme will give the original equation under the continuous limit. Finally an example is presented to illustrate the applications of the result.
    • 基金项目: 国家自然科学基金(批准号:10872037),安徽省自然科学基金(批准号:070416226)资助的课题.
    [1]

    Lie S 1889 Die infinitesimalen Beruhrungstransformationen der Mechanik (Leipz: Berichte)

    [2]

    Olver P J 1986 Applications of Lie Groups to differential Equations ( New York: Springer)

    [3]

    Wluman G and Kumei S 1989 Symmetries and Differential Equations (Berlin: Springer)

    [4]

    Ibragimov N H 1985 Transformation Groups Applied to Mathematical Physics ( Boston: Reidel)

    [5]

    Noether A E 1918 Nachr. Akad. Wiss. Gottingen Math.Phys. KI II 235

    [6]

    Li Z P 1981 Acta Phys.Sin 30 1659 (in Chinese) [李子平 1981 物理学报30 1659]

    [7]

    Luo Y, Zhao Y Y 1986 J.Beijing Inst. Technol 6 41 (in Chinese) [罗 勇、赵跃宇 1986 北京工业学院学报 6 41]

    [8]

    Zhao Y Y, Mei F X 1999 Symmetries and Conserved quantities of Mechanical systems (Beijing: Science Press) (in Chinese) [赵跃宇、梅凤翔 1999 (北京:科学出版社)]

    [9]

    Mei F X 1999 Applications of Lie Groups and Lie algebras to Constrained Mechanical Systems (Beijing: Science Press) (in Chinese)[梅凤翔 1999 李群和李代数对约束力学系统应用 (北京:科学出版社)]

    [10]

    Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press) (in Chinese) [梅凤翔 2004 约束力学系统的对称性与守恒量 (北京:北京理工大学出版社)]

    [11]

    Levi D, Winternitz P 1991 Phys.Lett. 152 A 335

    [12]

    Levi D, Winternitz P 1993 J.Math.Phys. 34 3713

    [13]

    Levi D, Winternitz P 1995 Symmetries of Discrete Dynamical Systems. Technical Report CRM-2312. 1995, Centre de recherches mathématiques,Université de Motréal

    [14]

    Floreanini R, Negro J, Nieto L M, Vinet L 1996 Lett.Math.Phys. 36 351

    [15]

    Floreanini R, Vinet L 1995 J.Math.Phys. 36 7024

    [16]

    Hernández Heredero R, Levi D 2003 J.Nonl.Math.Phys. 10 Suppl 2 77

    [17]

    Hernández Heredero R, Levi D, M A Rodriguez, P Winternitz 2000 J.Phys.A:Math.Gen. 33 5025

    [18]

    Hernández Heredero R, Levi D, Rodriguez M A, Winternitz P 2001 J.Phys.A:Math.Gen. 34 2459

    [19]

    Dorodnitsyn V A 1991 J.Sov.Math. 55 1490

    [20]

    Dorodnitsyn V A 1993 Dokl.Ak.Nauk. 328 678

    [21]

    Dorodnitsyn V A 1994 Int.J.Mod.Phys. C5 723

    [22]

    Dorodnitsyn V A, Kozlov R 2003 J.Nonl.Math.Phys. 10 16

    [23]

    Dorodnitsyn V A, Kozlov R, Winternitz P 2000 J.Math.Phys. 41 480

    [24]

    Dorodnitsyn V A, Kozlov R, Winternitz.P 2004 J.Math.Phys. 45 336

    [25]

    Dorodnitsyn V A, Winternitz P 2000 Nonlinear Dynamics. 22 49

    [26]

    Fu J L, Chen L Q, Salnalor J, Tang Y F 2006 Phys. Lett. A 358 5

    [27]

    Fu J L, Dai G D, Jiménes S, Tang Y F 2007 Chin.Phys. 16 570

    [28]

    Fu J L, Chen B Y,Tang Y F, Fu H 2008 Chin.Phys. B 17 3942

    [29]

    Fu J L, Chen B Y, Xie F P 2008 Chin.Phys. B 17 4354

    [30]

    Fu J L, Nie N M, Huang J F, Salvador J, Tang Y F, Lius V, Zhao W J 2009 Chin.Phys. B 18 2634

    [31]

    Fu J L, Chen L Q, Chen B Y 2009 Sci.China G 39 1320

    [32]

    Liu R W, Zhang H B, Chen L Q 2006 Chin.Phys. 15 249

    [33]

    Shi S Y, Fu J L, Chen L Q 2008 Chin. Phys. B 17 385

    [34]

    Shi S Y, Fu J L, Huang X H, Chen L Q, Zhang X B 2008 Chin. Phys. B 17 754

    [35]

    Zhang H B, Chen L Q, Gu S L, Liu C Z 2007 Chin.Phys. 16 582

    [36]

    Zhang H B, Chen L Q, Liu R W 2005 Chin. Phys. 14 238

    [37]

    Zhang H B, Chen L Q, Liu R W 2005 Chin. Phys. 14 888

    [38]

    Zhang H B, Chen L Q, Liu R W 2005 Chin. Phys. 14 1031

  • [1]

    Lie S 1889 Die infinitesimalen Beruhrungstransformationen der Mechanik (Leipz: Berichte)

    [2]

    Olver P J 1986 Applications of Lie Groups to differential Equations ( New York: Springer)

    [3]

    Wluman G and Kumei S 1989 Symmetries and Differential Equations (Berlin: Springer)

    [4]

    Ibragimov N H 1985 Transformation Groups Applied to Mathematical Physics ( Boston: Reidel)

    [5]

    Noether A E 1918 Nachr. Akad. Wiss. Gottingen Math.Phys. KI II 235

    [6]

    Li Z P 1981 Acta Phys.Sin 30 1659 (in Chinese) [李子平 1981 物理学报30 1659]

    [7]

    Luo Y, Zhao Y Y 1986 J.Beijing Inst. Technol 6 41 (in Chinese) [罗 勇、赵跃宇 1986 北京工业学院学报 6 41]

    [8]

    Zhao Y Y, Mei F X 1999 Symmetries and Conserved quantities of Mechanical systems (Beijing: Science Press) (in Chinese) [赵跃宇、梅凤翔 1999 (北京:科学出版社)]

    [9]

    Mei F X 1999 Applications of Lie Groups and Lie algebras to Constrained Mechanical Systems (Beijing: Science Press) (in Chinese)[梅凤翔 1999 李群和李代数对约束力学系统应用 (北京:科学出版社)]

    [10]

    Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press) (in Chinese) [梅凤翔 2004 约束力学系统的对称性与守恒量 (北京:北京理工大学出版社)]

    [11]

    Levi D, Winternitz P 1991 Phys.Lett. 152 A 335

    [12]

    Levi D, Winternitz P 1993 J.Math.Phys. 34 3713

    [13]

    Levi D, Winternitz P 1995 Symmetries of Discrete Dynamical Systems. Technical Report CRM-2312. 1995, Centre de recherches mathématiques,Université de Motréal

    [14]

    Floreanini R, Negro J, Nieto L M, Vinet L 1996 Lett.Math.Phys. 36 351

    [15]

    Floreanini R, Vinet L 1995 J.Math.Phys. 36 7024

    [16]

    Hernández Heredero R, Levi D 2003 J.Nonl.Math.Phys. 10 Suppl 2 77

    [17]

    Hernández Heredero R, Levi D, M A Rodriguez, P Winternitz 2000 J.Phys.A:Math.Gen. 33 5025

    [18]

    Hernández Heredero R, Levi D, Rodriguez M A, Winternitz P 2001 J.Phys.A:Math.Gen. 34 2459

    [19]

    Dorodnitsyn V A 1991 J.Sov.Math. 55 1490

    [20]

    Dorodnitsyn V A 1993 Dokl.Ak.Nauk. 328 678

    [21]

    Dorodnitsyn V A 1994 Int.J.Mod.Phys. C5 723

    [22]

    Dorodnitsyn V A, Kozlov R 2003 J.Nonl.Math.Phys. 10 16

    [23]

    Dorodnitsyn V A, Kozlov R, Winternitz P 2000 J.Math.Phys. 41 480

    [24]

    Dorodnitsyn V A, Kozlov R, Winternitz.P 2004 J.Math.Phys. 45 336

    [25]

    Dorodnitsyn V A, Winternitz P 2000 Nonlinear Dynamics. 22 49

    [26]

    Fu J L, Chen L Q, Salnalor J, Tang Y F 2006 Phys. Lett. A 358 5

    [27]

    Fu J L, Dai G D, Jiménes S, Tang Y F 2007 Chin.Phys. 16 570

    [28]

    Fu J L, Chen B Y,Tang Y F, Fu H 2008 Chin.Phys. B 17 3942

    [29]

    Fu J L, Chen B Y, Xie F P 2008 Chin.Phys. B 17 4354

    [30]

    Fu J L, Nie N M, Huang J F, Salvador J, Tang Y F, Lius V, Zhao W J 2009 Chin.Phys. B 18 2634

    [31]

    Fu J L, Chen L Q, Chen B Y 2009 Sci.China G 39 1320

    [32]

    Liu R W, Zhang H B, Chen L Q 2006 Chin.Phys. 15 249

    [33]

    Shi S Y, Fu J L, Chen L Q 2008 Chin. Phys. B 17 385

    [34]

    Shi S Y, Fu J L, Huang X H, Chen L Q, Zhang X B 2008 Chin. Phys. B 17 754

    [35]

    Zhang H B, Chen L Q, Gu S L, Liu C Z 2007 Chin.Phys. 16 582

    [36]

    Zhang H B, Chen L Q, Liu R W 2005 Chin. Phys. 14 238

    [37]

    Zhang H B, Chen L Q, Liu R W 2005 Chin. Phys. 14 888

    [38]

    Zhang H B, Chen L Q, Liu R W 2005 Chin. Phys. 14 1031

  • [1] 徐瑞莉, 方建会, 张斌. 离散差分序列变质量Hamilton系统的Lie对称性与Noether守恒量. 物理学报, 2013, 62(15): 154501. doi: 10.7498/aps.62.154501
    [2] 王肖肖, 张美玲, 韩月林, 贾利群. Chetaev型非完整约束相对运动动力学系统Nielsen方程的Mei对称性和Mei守恒量. 物理学报, 2012, 61(20): 200203. doi: 10.7498/aps.61.200203
    [3] 解银丽, 贾利群, 杨新芳. 相对运动动力学系统Nielsen方程的Lie对称性与Hojman守恒量. 物理学报, 2011, 60(3): 030201. doi: 10.7498/aps.60.030201
    [4] 刘仰魁. 一般完整力学系统Mei对称性的一种守恒量. 物理学报, 2010, 59(1): 7-10. doi: 10.7498/aps.59.7
    [5] 董文山, 黄宝歆. 广义非完整力学系统的Lie对称性与Noether守恒量. 物理学报, 2010, 59(1): 1-6. doi: 10.7498/aps.59.1
    [6] 施沈阳, 黄晓虹, 张晓波, 金立. 离散差分变分Hamilton系统的Lie对称性与Noether守恒量. 物理学报, 2009, 58(6): 3625-3631. doi: 10.7498/aps.58.3625
    [7] 贾利群, 崔金超, 张耀宇, 罗绍凯. Chetaev型约束力学系统Appell方程的Lie对称性与守恒量. 物理学报, 2009, 58(1): 16-21. doi: 10.7498/aps.58.16
    [8] 张 凯, 王 策, 周利斌. Nambu力学系统的Lie对称性及其守恒量. 物理学报, 2008, 57(11): 6718-6721. doi: 10.7498/aps.57.6718
    [9] 黄晓虹, 张晓波, 施沈阳. 离散差分序列变质量力学系统的Mei对称性. 物理学报, 2008, 57(10): 6056-6062. doi: 10.7498/aps.57.6056
    [10] 施沈阳, 傅景礼, 陈立群. 离散Lagrange系统的Lie对称性. 物理学报, 2007, 56(6): 3060-3063. doi: 10.7498/aps.56.3060
    [11] 夏丽莉, 李元成. 相空间中非完整可控力学系统的对称性摄动与绝热不变量. 物理学报, 2007, 56(11): 6183-6187. doi: 10.7498/aps.56.6183
    [12] 方建会, 王 鹏, 丁 宁. 相空间中力学系统的Lie-Mei对称性. 物理学报, 2006, 55(8): 3821-3824. doi: 10.7498/aps.55.3821
    [13] 方建会, 丁 宁, 王 鹏. 非完整力学系统的Noether-Lie对称性. 物理学报, 2006, 55(8): 3817-3820. doi: 10.7498/aps.55.3817
    [14] 张立新, 钱维宏, 高新全, 丑纪范. 协调多时次差分格式及其稳定性. 物理学报, 2005, 54(7): 3465-3472. doi: 10.7498/aps.54.3465
    [15] 张 毅. 相空间中单面完整约束力学系统的对称性与守恒量. 物理学报, 2005, 54(10): 4488-4495. doi: 10.7498/aps.54.4488
    [16] 张 毅. 单面完整约束力学系统的形式不变性. 物理学报, 2004, 53(2): 331-336. doi: 10.7498/aps.53.331
    [17] 何文平, 封国林, 董文杰, 李建平. 求解对流扩散方程的四种差分格式的比较. 物理学报, 2004, 53(10): 3258-3264. doi: 10.7498/aps.53.3258
    [18] 张 毅. 非保守力和非完整约束对Hamilton系统Lie对称性的影响. 物理学报, 2003, 52(6): 1326-1331. doi: 10.7498/aps.52.1326
    [19] 方建会, 陈培胜, 张 军, 李 红. 相对论力学系统的形式不变性与Lie对称性. 物理学报, 2003, 52(12): 2945-2948. doi: 10.7498/aps.52.2945
    [20] 梅凤翔. 包含伺服约束的非完整系统的Lie对称性与守恒量. 物理学报, 2000, 49(7): 1207-1210. doi: 10.7498/aps.49.1207
计量
  • 文章访问数:  8711
  • PDF下载量:  830
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-08-31
  • 修回日期:  2009-11-05
  • 刊出日期:  2010-04-05

/

返回文章
返回