搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于微控制器数字硬件实现的网格涡卷超混沌系统

徐煜明 包伯成 徐强

引用本文:
Citation:

基于微控制器数字硬件实现的网格涡卷超混沌系统

徐煜明, 包伯成, 徐强

Grid-scroll hyperchaotic system based on microcontroller digital hardware implementation

Xu Yu-Ming, Bao Bo-Cheng, Xu Qiang
PDF
导出引用
  • 基于微控制器(MCU)设计了一个通用的四维混沌系统数字硬件实验电路,由此实现了9×7网格涡卷的混沌和超混沌吸引子的生成.本文基于由Colpitts振荡器模型延伸出的四维多涡卷超混沌系统,通过引入单位锯齿波函数替换原系统中的三角波函数,构建了一个便于MCU数字硬件实现的新的网格涡卷超混沌系统,并对新系统网格涡卷吸引子的形成机理进行了分析和数值仿真.通过采用Euler算法对新系统进行离散化,在实验电路的有效动态范围内可以生成比原系统更多网格涡卷数量的吸引子.实验结果有效验证了本文基于MCU实现的网格涡卷超混沌
    Based on the microcontroller (MCU), a universal digital hardware experimental circuit for four-dimensional chaotic system is designed, from which 9×7-grids scroll chaotic and hyperchaotic attractors are generated. Reference [1] has presented a four-dimensional multi-scroll hyperchaotic system extended from Colpitts oscillator model. In this paper, a new four-dimensional grid-scroll hyperchaotic system is constructed by introducing a unit sawtooth wave function to replace the triangular function in the original system, which is realized by utilizing MCU digital hardware implementation easily. Analysis and numerical simulations are performed for the formation mechanism of grid-scroll attractor in the new system. By using Euler algorithm to discretize the proposed grid-scroll hyperchaotic system, an attractor with more grid-scroll number than that of the original system can be generated in the effective dynamic range of the experimental circuit. Experimental results verified the feasibility of grid-scroll hyperchaotic system based on MCU implementation.
    • 基金项目: 江苏省自然科学基金(批准号:BK2009105)资助的课题.
    [1]

    Yalcin M E 2007 Int. J. Bifur. Chaos 17 4471

    [2]

    Lü J H, Chen G R 2006 Int. J. Bifur. Chaos 16 775

    [3]

    Zhou W J, Yu S M 2009 Acta Phys. Sin. 58 113 (in Chinese) [周武杰、禹思敏 2009 物理学报 58 113]

    [4]

    Bao B C, Liu Z, Xu J P, Zhu L 2010 Acta Phys. Sin. 59 1546 (in Chinese) [包伯成、刘 中、许建平、朱 雷 2010 物理学报 59 1546]

    [5]

    Wang F Q, Liu C X, Lu J J 2006 Acta Phys. Sin. 55 3289 (in Chinese) [王发强、刘崇新、逯俊杰 2006 物理学报 55 3289]

    [6]

    Yu S M, Lin Q H, Qiu S S 2004 Acta Phys. Sin. 53 2084 (in Chinese) [禹思敏、林清华、丘水生 2004 物理学报 53 2084]

    [7]

    Zhang C X, Yu S M 2009 Acta Phys. Sin. 58 120 (in Chinese)[张朝霞、禹思敏 2009 物理学报 58 120]

    [8]

    Lü J H, Murali K, Sinha S, Leung H, Aziz-Alaoui MA 2008 Phys. Lett. A 372 3234

    [9]

    Liu M H, Yu S M 2006 Acta Phys. Sin. 55 5707 (in Chinese) [刘明华、禹思敏 2006 物理学报 55 5707]

    [10]

    Yu S M 2005 Acta Phys. Sin. 54 1500 (in Chinese) [禹思敏 2005 物理学报 54 1500]

    [11]

    Yu S M, Lü J H, Leung H, Chen G R 2005 IEEE Trans. Circuits Syst. Ⅰ 52 1459

    [12]

    Lü J H, Yu S M, Leung H, Chen G R 2006 IEEE Trans. Circuits Syst. Ⅰ 53 149

    [13]

    Yu S, Tang W K S, Lü J H, Chen G R 2008 IEEE Trans. Circuits Syst. Ⅱ 55 1168

    [14]

    Deng W H, Lü J H 2007 Phys. Lett. A 369 438

    [15]

    Yalcin M, zoguz S 2007 Chaos 17 033112

    [16]

    Deng W H, Lü J H 2006 Chaos 16 043120

    [17]

    Yu S M, Lin Q H, Qiu S S 2003 Acta Phys. Sin. 52 25 (in Chinese) [禹思敏、林清华、丘水生 2003 物理学报 52 25]

    [18]

    Yu S M, Lü J H, Tang W K S, Chen G R 2006 Chaos 16 033126

    [19]

    Radwan A, Soliman A, Elwakil A 2007 Int. J. Bifur. Chaos 17 227

    [20]

    Wang F Q, Liu C X 2007 Chin. Phys. 16 942

    [21]

    Wang F Q, Liu C X 2006 Chin. Phys. 15 2878

    [22]

    Wang F Q, Liu C X 2007 Acta Phys. Sin. 56 1983 (in Chinese) [王发强、刘崇新 2007 物理学报 56 1983]

    [23]

    Chen L, Peng H J, Wang D S 2008 Acta Phys. Sin. 57 3337 (in Chinese) [谌 龙、彭海军、王德石 2008 物理学报 57 3337]

    [24]

    Luo X H, Li H Q, Dai X G 2008 Acta Phys. Sin. 57 7511 (in Chinese) [罗小华、李华青、代祥光 2008 物理学报 57 7511]

    [25]

    Maggio G M, Feo O D, Kennedy M P 1999 IEEE Trans. Circuits Syst. Ⅰ 46 1118

    [26]

    Zhou W J, Yu S M 2008 Acta Phys. Sin. 57 4738 (in Chinese) [周武杰、禹思敏 2008 物理学报 57 4738]

    [27]

    Yu S M, Lü J H 2007 Proc. 26th Chinese Control Conf. (Vol. 6)(Beijing: Beijing Uni. of Aeronautics and Astronautics Press) P409 (in Chinese) [禹思敏、吕金虎 2007 第26届中国控制会议论文集(第六卷)(北京:北京航空航天大学出版社)第409页]

    [28]

    Zhang Z, Chen G R, Yu S M 2009 Int. J. Circ. Theor. Appl. 37 31

    [29]

    Zhang Y, Yu S M, Liu M H 2007 J. Circ. and Syst. 12 39 (in Chinese) [张 钰、禹思敏、刘明华 2007 电路与系统学报 12 39]

  • [1]

    Yalcin M E 2007 Int. J. Bifur. Chaos 17 4471

    [2]

    Lü J H, Chen G R 2006 Int. J. Bifur. Chaos 16 775

    [3]

    Zhou W J, Yu S M 2009 Acta Phys. Sin. 58 113 (in Chinese) [周武杰、禹思敏 2009 物理学报 58 113]

    [4]

    Bao B C, Liu Z, Xu J P, Zhu L 2010 Acta Phys. Sin. 59 1546 (in Chinese) [包伯成、刘 中、许建平、朱 雷 2010 物理学报 59 1546]

    [5]

    Wang F Q, Liu C X, Lu J J 2006 Acta Phys. Sin. 55 3289 (in Chinese) [王发强、刘崇新、逯俊杰 2006 物理学报 55 3289]

    [6]

    Yu S M, Lin Q H, Qiu S S 2004 Acta Phys. Sin. 53 2084 (in Chinese) [禹思敏、林清华、丘水生 2004 物理学报 53 2084]

    [7]

    Zhang C X, Yu S M 2009 Acta Phys. Sin. 58 120 (in Chinese)[张朝霞、禹思敏 2009 物理学报 58 120]

    [8]

    Lü J H, Murali K, Sinha S, Leung H, Aziz-Alaoui MA 2008 Phys. Lett. A 372 3234

    [9]

    Liu M H, Yu S M 2006 Acta Phys. Sin. 55 5707 (in Chinese) [刘明华、禹思敏 2006 物理学报 55 5707]

    [10]

    Yu S M 2005 Acta Phys. Sin. 54 1500 (in Chinese) [禹思敏 2005 物理学报 54 1500]

    [11]

    Yu S M, Lü J H, Leung H, Chen G R 2005 IEEE Trans. Circuits Syst. Ⅰ 52 1459

    [12]

    Lü J H, Yu S M, Leung H, Chen G R 2006 IEEE Trans. Circuits Syst. Ⅰ 53 149

    [13]

    Yu S, Tang W K S, Lü J H, Chen G R 2008 IEEE Trans. Circuits Syst. Ⅱ 55 1168

    [14]

    Deng W H, Lü J H 2007 Phys. Lett. A 369 438

    [15]

    Yalcin M, zoguz S 2007 Chaos 17 033112

    [16]

    Deng W H, Lü J H 2006 Chaos 16 043120

    [17]

    Yu S M, Lin Q H, Qiu S S 2003 Acta Phys. Sin. 52 25 (in Chinese) [禹思敏、林清华、丘水生 2003 物理学报 52 25]

    [18]

    Yu S M, Lü J H, Tang W K S, Chen G R 2006 Chaos 16 033126

    [19]

    Radwan A, Soliman A, Elwakil A 2007 Int. J. Bifur. Chaos 17 227

    [20]

    Wang F Q, Liu C X 2007 Chin. Phys. 16 942

    [21]

    Wang F Q, Liu C X 2006 Chin. Phys. 15 2878

    [22]

    Wang F Q, Liu C X 2007 Acta Phys. Sin. 56 1983 (in Chinese) [王发强、刘崇新 2007 物理学报 56 1983]

    [23]

    Chen L, Peng H J, Wang D S 2008 Acta Phys. Sin. 57 3337 (in Chinese) [谌 龙、彭海军、王德石 2008 物理学报 57 3337]

    [24]

    Luo X H, Li H Q, Dai X G 2008 Acta Phys. Sin. 57 7511 (in Chinese) [罗小华、李华青、代祥光 2008 物理学报 57 7511]

    [25]

    Maggio G M, Feo O D, Kennedy M P 1999 IEEE Trans. Circuits Syst. Ⅰ 46 1118

    [26]

    Zhou W J, Yu S M 2008 Acta Phys. Sin. 57 4738 (in Chinese) [周武杰、禹思敏 2008 物理学报 57 4738]

    [27]

    Yu S M, Lü J H 2007 Proc. 26th Chinese Control Conf. (Vol. 6)(Beijing: Beijing Uni. of Aeronautics and Astronautics Press) P409 (in Chinese) [禹思敏、吕金虎 2007 第26届中国控制会议论文集(第六卷)(北京:北京航空航天大学出版社)第409页]

    [28]

    Zhang Z, Chen G R, Yu S M 2009 Int. J. Circ. Theor. Appl. 37 31

    [29]

    Zhang Y, Yu S M, Liu M H 2007 J. Circ. and Syst. 12 39 (in Chinese) [张 钰、禹思敏、刘明华 2007 电路与系统学报 12 39]

  • [1] 闫登卫, 王丽丹, 段书凯. 基于忆阻器的多涡卷混沌系统及其脉冲同步控制. 物理学报, 2018, 67(11): 110502. doi: 10.7498/aps.67.20180025
    [2] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器. 物理学报, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [3] 左婷, 孙克辉, 艾星星, 王会海. 基于同相第二代电流传输器的网格多涡卷混沌电路研究. 物理学报, 2014, 63(8): 080501. doi: 10.7498/aps.63.080501
    [4] 吴先明, 何怡刚, 于文新. 基于电流反馈放大器的网格多涡卷混沌电路设计与实现. 物理学报, 2014, 63(18): 180506. doi: 10.7498/aps.63.180506
    [5] 刘恒, 余海军, 向伟. 带未知扰动的多涡卷混沌系统修正函数时滞投影同步. 物理学报, 2012, 61(18): 180503. doi: 10.7498/aps.61.180503
    [6] 林愿, 王春华, 徐浩. 基于电流传输器的网格多涡卷混沌吸引子在混合图像加密中的研究. 物理学报, 2012, 61(24): 240503. doi: 10.7498/aps.61.240503
    [7] 曹鹤飞, 张若洵. 基于单驱动变量分数阶混沌同步的参数调制数字通信及硬件实现. 物理学报, 2012, 61(2): 020508. doi: 10.7498/aps.61.020508
    [8] 王春华, 尹晋文, 林愿. 基于电流传输器的网格多涡卷混沌电路设计与实现. 物理学报, 2012, 61(21): 210507. doi: 10.7498/aps.61.210507
    [9] 武花干, 包伯成, 刘中. 吸引子涡卷数量与分布的控制:系统设计及电路实现. 物理学报, 2011, 60(9): 090502. doi: 10.7498/aps.60.090502
    [10] 陈仕必, 曾以成, 徐茂林, 陈家胜. 用多项式和阶跃函数构造网格多涡卷混沌吸引子及其电路实现. 物理学报, 2011, 60(2): 020507. doi: 10.7498/aps.60.020507
    [11] 包伯成, 刘中, 许建平, 朱雷. 基于Colpitts振荡器模型生成的多涡卷超混沌吸引子. 物理学报, 2010, 59(3): 1540-1548. doi: 10.7498/aps.59.1540
    [12] 刘扬正, 林长圣, 王忠林. 新的切换四涡卷超混沌系统及其电路实现. 物理学报, 2010, 59(12): 8407-8413. doi: 10.7498/aps.59.8407
    [13] 张朝霞, 禹思敏. 基于数字信号处理器的语音无线混沌通信——系统设计与硬件实现. 物理学报, 2010, 59(5): 3017-3026. doi: 10.7498/aps.59.3017
    [14] 吴忠强, 邝钰. 多涡卷混沌系统的广义同步控制. 物理学报, 2009, 58(10): 6823-6827. doi: 10.7498/aps.58.6823
    [15] 吕 翎, 郭治安, 李 岩, 夏晓岚. 不确定混沌系统的参数识别与同步控制器的backstepping设计. 物理学报, 2007, 56(1): 95-100. doi: 10.7498/aps.56.95
    [16] 都 琳, 徐 伟, 贾飞蕾, 李 爽. 基于低通滤波函数实现陀螺系统的反馈控制. 物理学报, 2007, 56(7): 3813-3819. doi: 10.7498/aps.56.3813
    [17] 周 平. 利用标量控制器实现一类混沌系统同步. 物理学报, 2007, 56(7): 3777-3781. doi: 10.7498/aps.56.3777
    [18] 孙 琳, 姜德平. 驱动函数切换调制实现超混沌数字保密通信. 物理学报, 2006, 55(7): 3283-3288. doi: 10.7498/aps.55.3283
    [19] 关新平, 何宴辉, 邬 晶. 基于弹性控制器的混沌同步. 物理学报, 2003, 52(11): 2718-2722. doi: 10.7498/aps.52.2718
    [20] 方锦清, 高远, 翁甲强, 罗晓曙, 陈关荣. 小波函数反馈法实现对强流束晕混沌的有效控制. 物理学报, 2001, 50(3): 435-439. doi: 10.7498/aps.50.435
计量
  • 文章访问数:  7112
  • PDF下载量:  1040
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-12-15
  • 修回日期:  2009-12-28
  • 刊出日期:  2010-09-15

/

返回文章
返回