搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高传输通过率带状电子注聚焦与传输特性的研究

阮存军 王树忠 韩莹 李庆生

引用本文:
Citation:

高传输通过率带状电子注聚焦与传输特性的研究

阮存军, 王树忠, 韩莹, 李庆生

Investigation on focus and transport characteristics of high transmission rate sheet electron beam

Ruan Cun-Jun, Wang Shu-Zhong, Han Ying, Li Qing-Sheng
PDF
导出引用
  • 大宽高比的非轴对称带状电子注在微波和毫米波真空电子器件中具有显著的技术优势与应用潜力. 采用轴向均匀磁场可以聚焦和传输带状电子注,且具有易于实现电子注与磁场的匹配和调节、聚焦强流电子注以及无传输截止电压限制等优点,但面临严重的Diocotron不稳定性. 结合单粒子模型理论和冷流模型理论,对带状电子注传输特性进行的研究及其数值计算表明,通过详细设计带状注电子光学系统物理参数,增强聚焦磁场并在传输通道高度方向上选择较大的电子注填充比,可以有效降低Diocotron不稳定性对带状电子注的影响,并实现其长距离稳
    The investigation on focus and transport characteristics of sheet electron beam has been a key technique for the development of high-power microwave and millimeter-wave vacuum electronic devices. Compared with the period permanent magnetic system to transport the sheet electron beam, the uniform magnetic focusing system has many advantages, such as easily adjusting and matching the magnet with the beam, focusing the intensity electron beam, no cut off beam voltage restriction, etc. However, the Diocotron instability of the sheet electron beam in the uniform magnetic field can produce the distortion, deformation, vortex and oscillation to destroy the beam transportation. In this paper, the single-particle model and the cold-fluid model theory and calculation are used to indicate that if the electron optics system parameters of the sheet beam are designed more carefully, the magnitude of uniform magnetic field and the filling factor of the beam in transport tunnel are increased appropriately, the Diocotron instability can be reduced, even vanished completely to transport the sheet beam effectively in a long distance. To verify the above conclusion, the electron gun with the ellipse cathode and the electron optics system are designed and optimized with the three-dimensinal simulation software in detail. After the complex assembly and weld process with the small geometry and high precision, the W-band sheet electron beam tube is manufactured and tested. The sheet beam cross section of 10 mm0.7 mm is achieved experimentally with the one-dimensional compression and formation of electron gun. Also, with a beam voltage of 2080 kV, and beam current of 0.644.60 A,the experimental transmission rate of sheet beam electron tube manufactured is more than 95% with a drift length of 90 mm, which is higher than the periodic cusp magnetic field transport experiment result of 92% obtained recently.
    • 基金项目: 国家自然科学基金(批准号:60501019,10775139,60971073) 资助的课题.
    [1]

    Booske J H, Brian D M, Thomas M A Jr 1993 J. Appl. Phys. 73 4140

    [2]
    [3]

    Booske J H, Basten M A, Kumbasar A H, Antonsen T M Jr, Bidwell S W, Carmel Y, Destler W W, Granatstein V L, Radack D J 1994 Phys. Plasmas 1 1714

    [4]

    Basten M A, Booske J H 1999 J. Appl. Phys. 85 6313

    [5]
    [6]
    [7]

    Zhou J, Bhatt R, Chen C P 2006 Phys. Rev. Spec. Top. Accel. Beams 9 034401

    [8]
    [9]

    Carlsten B E, Russell S J, Earley L M, Krawczyk F L, Potter J M, Ferguson P, Humphries S Jr 2005 IEEE Trans. Plasma Sci. 33 85

    [10]
    [11]

    Cusick M, Atkinson J, Balkcum A, Caryotakis G, Gajaria D, Grant T, Meyer C, Lind K, Perrin M, Scheitrum G, Jensen A 2009 IEEE International Vacuum Electronics Conference (Rome: IEEE) p296

    [12]

    Scheitrum G, Caryotakis G, Burke A, Jensen A, Jongewaard E, Neubauer M, Phillips R, Steele R 2006 IEEE International Vacuum Electronics Conference (California: IEEE) p481

    [13]
    [14]
    [15]

    Wang S Z, Wang Y, Ding Y G, Ruan C J 2008 IEEE Trans. Plasma Sci. 36 665

    [16]

    Zhao D 2009 Phys. Plasmas 16 113102

    [17]
    [18]

    Nguyen K T, Pasour J A, Antonsen T M Jr, Larsen P B, Petillo J J, Levush B 2009 IEEEE Trans. Electron Dev. 56 744

    [19]
  • [1]

    Booske J H, Brian D M, Thomas M A Jr 1993 J. Appl. Phys. 73 4140

    [2]
    [3]

    Booske J H, Basten M A, Kumbasar A H, Antonsen T M Jr, Bidwell S W, Carmel Y, Destler W W, Granatstein V L, Radack D J 1994 Phys. Plasmas 1 1714

    [4]

    Basten M A, Booske J H 1999 J. Appl. Phys. 85 6313

    [5]
    [6]
    [7]

    Zhou J, Bhatt R, Chen C P 2006 Phys. Rev. Spec. Top. Accel. Beams 9 034401

    [8]
    [9]

    Carlsten B E, Russell S J, Earley L M, Krawczyk F L, Potter J M, Ferguson P, Humphries S Jr 2005 IEEE Trans. Plasma Sci. 33 85

    [10]
    [11]

    Cusick M, Atkinson J, Balkcum A, Caryotakis G, Gajaria D, Grant T, Meyer C, Lind K, Perrin M, Scheitrum G, Jensen A 2009 IEEE International Vacuum Electronics Conference (Rome: IEEE) p296

    [12]

    Scheitrum G, Caryotakis G, Burke A, Jensen A, Jongewaard E, Neubauer M, Phillips R, Steele R 2006 IEEE International Vacuum Electronics Conference (California: IEEE) p481

    [13]
    [14]
    [15]

    Wang S Z, Wang Y, Ding Y G, Ruan C J 2008 IEEE Trans. Plasma Sci. 36 665

    [16]

    Zhao D 2009 Phys. Plasmas 16 113102

    [17]
    [18]

    Nguyen K T, Pasour J A, Antonsen T M Jr, Larsen P B, Petillo J J, Levush B 2009 IEEEE Trans. Electron Dev. 56 744

    [19]
  • [1] 石启陈, 赵志杰, 张焕好, 陈志华, 郑纯. 流向磁场抑制Kelvin-Helmholtz不稳定性机理研究. 物理学报, 2021, 70(15): 154702. doi: 10.7498/aps.70.20202024
    [2] 郭良浩, 王少萌, 杨利霞, 王凯程, 马佳路, 周俊, 宫玉彬. 太赫兹波在神经细胞中传输的弱谐振效应. 物理学报, 2021, 70(24): 240301. doi: 10.7498/aps.70.20211677
    [3] 沙莎, 张焕好, 陈志华, 郑纯, 吴威涛, 石启陈. 纵向磁场抑制Richtmyer-Meshkov不稳定性机理. 物理学报, 2020, 69(18): 184701. doi: 10.7498/aps.69.20200363
    [4] 刘永欣, 陈子阳, 蒲继雄. 随机电磁高阶Bessel-Gaussian光束在海洋湍流中的传输特性. 物理学报, 2017, 66(12): 124205. doi: 10.7498/aps.66.124205
    [5] 赖剑强, 魏彦玉, 许雄, 沈飞, 刘洋, 刘漾, 黄民智, 唐涛, 宫玉彬. 140GHz大功率交错双栅行波管的设计和模拟研究. 物理学报, 2012, 61(17): 178501. doi: 10.7498/aps.61.178501
    [6] 刘洋, 徐进, 许雄, 沈飞, 魏彦玉, 黄民智, 唐涛, 王文祥, 宫玉彬. V形曲折矩形槽慢波结构的研究. 物理学报, 2012, 61(15): 154208. doi: 10.7498/aps.61.154208
    [7] 丁攀峰, 蒲继雄. 部分相干涡旋光束传输中的光斑分析. 物理学报, 2012, 61(17): 174201. doi: 10.7498/aps.61.174201
    [8] 黄永超, 张廷蓉, 陈森会, 宋宏远, 李艳桃, 张伟林. 椭圆高斯光束在单轴晶体中垂直于光轴的传输特性. 物理学报, 2011, 60(7): 074212. doi: 10.7498/aps.60.074212
    [9] 丁攀峰, 蒲继雄. 拉盖尔高斯涡旋光束的传输. 物理学报, 2011, 60(9): 094204. doi: 10.7498/aps.60.094204
    [10] 赵鼎. 关于闭合及偏置PCM结构约束带状电子注可行性的研究. 物理学报, 2010, 59(3): 1712-1720. doi: 10.7498/aps.59.1712
    [11] 杜广星, 钱宝良. 准矩形截面强流相对论带状电子束的传输. 物理学报, 2010, 59(7): 4626-4633. doi: 10.7498/aps.59.4626
    [12] 梁林云, 戴松元, 方霞琴, 胡林华. 染料敏化太阳电池中TiO2膜内电子传输和背反应特性研究. 物理学报, 2008, 57(3): 1956-1962. doi: 10.7498/aps.57.1956
    [13] 颜森林. 混沌信号在光纤传输过程中的非线性演化. 物理学报, 2007, 56(4): 1994-2004. doi: 10.7498/aps.56.1994
    [14] 贾维国, 史培明, 杨性愉, 张俊萍, 樊国梁. 保偏光纤中相近频率传输区域的调制不稳定性. 物理学报, 2006, 55(9): 4575-4581. doi: 10.7498/aps.55.4575
    [15] 殷建玲, 刘承宜, 杨友源, 刘 江, 范广涵. 原子激光传输的有效ABCD形式研究. 物理学报, 2004, 53(2): 356-361. doi: 10.7498/aps.53.356
    [16] 苏纬仪, 杨 涓, 魏 昆, 毛根旺, 何洪庆. 金属平板前等离子体的电磁波功率反射系数计算分析. 物理学报, 2003, 52(12): 3102-3107. doi: 10.7498/aps.52.3102
    [17] 张鹏云, 宫野, 李国炳. 轴向磁场中辐射对电弧的螺旋不稳定性的影响. 物理学报, 1997, 46(8): 1525-1534. doi: 10.7498/aps.46.1525
    [18] 刘金远, 宫野, 李国炳, 马腾才, 张林. 轴向磁场中线性热势模型电弧的螺旋不稳定性. 物理学报, 1996, 45(4): 608-618. doi: 10.7498/aps.45.608
    [19] 郭世宠, 沈解伍, 蔡诗东. 非均匀磁场中的动力论漂移迴旋损失锥不稳定性. 物理学报, 1987, 36(12): 1598-1609. doi: 10.7498/aps.36.1598
    [20] 夏蒙棼, 周如玲. 逃逸电子不稳定性. 物理学报, 1980, 29(6): 788-793. doi: 10.7498/aps.29.788
计量
  • 文章访问数:  5663
  • PDF下载量:  971
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-09-10
  • 修回日期:  2011-01-05
  • 刊出日期:  2011-04-05

/

返回文章
返回