-
提出了一种基于光参量放大的高速实时光取样方案. 利用色散介质对光纤锁模激光器产生的窄脉冲源进行色散展宽,从而产生线性啁啾光信号. 将该信号和被取样信号同时送入高非线性光纤,利用高非线性光纤中的参量放大效应,将被取样信号的强度信息调制到线性啁啾光信号上. 在接收端利用不同中心波长的滤波器即可滤出不同时间点的取样信号,从而在光域同时完成了高速实时光取样和取样信号的串并转换. 是实现高速实时取样技术的一种极具竞争力的实现方案. 实验中,实现了对10 Gb/s非归零码OOK信号的40 GS/s的高速实时取样系统,并转换为4路10 GS/s取样信号输出. 在接收端成功根据4路取样信号恢复出被取样信号波形,验证了该实时光取样方案的可行性.We propose a novel technique to achieve a high speed real-time optical sampling system based on optical parametric amplification in high nonlinear fiber (HNLF). Linearly chirped pulses are obtained by the dispersive propagation of short pulses emitted by a mode-locked fiber laser. The pulses are then fed into an HNLF together with signal under sampling. Thanks to the optical parametric amplification effect in the HNLF, the amplitude information will be modulated onto the linearly chirped pulses. By employing optical band-pass filters or wavelength division multiplexing (WDM) technology before the receivers, simultaneous high speed optical sampling and optical serial-to-parallel conversion are achieved. We demonstrate the feasibility of the scheme by optical sampling a 10 Gb/s on-off keying (OOK) signal at a sampling rate of 40GS/s and simultaneously converting it into four 10 GS/s sampling outputs. And the 10 Gb/s OOK signal is reconstructed later by the four sampling outputs. The scheme is simple and of low cost, which makes it a good candidate in high speed real-time sampling system.
-
Keywords:
- optical communication /
- optical sampling /
- optical parametric amplification /
- high nonlinear fiber (HNLF)
[1] Westlund M, Andrekson P A, Sunnerud H 2005 31 st European Conference on Optical Communication(ECOC 2005) 4 937
[2] [3] Kung-Li Deng, Runser R J, Glesk I, Prucnal P R 1998 Photonics Technology Letters, IEEE 10 397
[4] [5] Jungerman R L, Lee G, Buccafusca O, Kaneko Y, Itagaki N, Shioda R, Harada A, Nihei Y, Sucha G 2002 Photonics Technology Letters, IEEE 14 1148
[6] Kawanishi S, Yamamoto T, Nakazawa T, Fejer M M 2001 Electronic Letters 37 842
[7] [8] Li J, Hansryd J, Hedekvist P O, Andrekson P A, Knudsen S N 2001 IEEE Photonic Technology Letters 13 987
[9] [10] [11] Skold M, Westlund M, Sunnerud H, Andrekson P A 2009 Journal of Lightwave Technology 27 3662
[12] [13] Yang J, Yu J, Hu H, Zhang A, Zhang L, Wang W, Yang E 2008 Acta Phys. Sin. 57 4667(in Chinese)[江 阳、于晋龙、胡 浩、张爱旭、张立台、王文睿、杨恩泽 2008 物理学报 57 2994]
[14] Azana J, Muriel M A 2000 IEEE Journal of Quantum Electronics 36 517
[15] [16] Almeida P J, Petropoulos P, Parmigiani F, Ibsen M, Richardson D J 2006 Journal of Lightwave Technology 24 2720
[17] -
[1] Westlund M, Andrekson P A, Sunnerud H 2005 31 st European Conference on Optical Communication(ECOC 2005) 4 937
[2] [3] Kung-Li Deng, Runser R J, Glesk I, Prucnal P R 1998 Photonics Technology Letters, IEEE 10 397
[4] [5] Jungerman R L, Lee G, Buccafusca O, Kaneko Y, Itagaki N, Shioda R, Harada A, Nihei Y, Sucha G 2002 Photonics Technology Letters, IEEE 14 1148
[6] Kawanishi S, Yamamoto T, Nakazawa T, Fejer M M 2001 Electronic Letters 37 842
[7] [8] Li J, Hansryd J, Hedekvist P O, Andrekson P A, Knudsen S N 2001 IEEE Photonic Technology Letters 13 987
[9] [10] [11] Skold M, Westlund M, Sunnerud H, Andrekson P A 2009 Journal of Lightwave Technology 27 3662
[12] [13] Yang J, Yu J, Hu H, Zhang A, Zhang L, Wang W, Yang E 2008 Acta Phys. Sin. 57 4667(in Chinese)[江 阳、于晋龙、胡 浩、张爱旭、张立台、王文睿、杨恩泽 2008 物理学报 57 2994]
[14] Azana J, Muriel M A 2000 IEEE Journal of Quantum Electronics 36 517
[15] [16] Almeida P J, Petropoulos P, Parmigiani F, Ibsen M, Richardson D J 2006 Journal of Lightwave Technology 24 2720
[17]
计量
- 文章访问数: 8750
- PDF下载量: 606
- 被引次数: 0