-
文章根据平稳重调脉冲(SRP)在梳状光纤(CPF)结构中的压缩原理,对色散渐减光纤(DDF)的色散特性进行设计,结果发现该色散渐减光纤的色散特性呈线性递减.对于平稳重调脉冲其压缩比与功率比等于光纤始末两端二阶色散系数的比值.当色散渐减光纤的斜率足够小时,无啁啾基阶孤子可以近似为平稳重调脉冲,当色散渐减光纤的色散斜率较大时,无啁啾基阶孤子不能近似为平稳重调脉冲.当基阶孤子带有与光纤色散斜率成正比的线性啁啾时,脉冲的压缩比与功率比更接近于光纤始末两端二阶色散系数的比值.说明带有线性啁啾的基阶孤子比不带啁啾的基阶孤子更接近于平稳重调脉冲.
-
关键词:
- 平稳重调脉冲(SRP) /
- 梳状光纤(CPF) /
- 色散渐减光纤(DDF) /
- 色散递减表达式
A ccording to the compression principle of stationary rescaled pulse (SRP) in the comb-like optical fiber (CPF), the design of dispersion decreasing fiber (DDF) for compressing stationary rescaled pulse is demonstrated in this paper. The dispersion profile of DDF is found to be decreased linearly. The compression ratio and the power ratio are both equal to the ratio between initial and final values of second order dispersion coefficient when the incident pulse is SRP. When the dispersion slope of the fiber is small enough, the fundamental soliton without chirp can be approximated as SRP. When the dispersion slope of the fiber is high, the fundamental soliton without chirp cannot be approximated as SRP. When the incident pulse is fundamental soliton with linear chirp, which is proportional to the dispersion slope of the fiber, the compression ratio and the power ratio are closer to the ratio between initial and final dispersion values,which indicates that the fundamental soliton with linear chirp is approximated as SRP with less error than fundamental soliton without chirp.-
Keywords:
- SRP(stationary rescaled pulse) /
- CPF(comblike profiled fiber) /
- DDF(dispersion decreasing fiber) /
- dispersion decreasing expression
[1] Tajima K 1987 Opt. Lett. 12 54
[2] Liu J H, Ding Y K, Tan L, Hu Z Y 2004 Acta Phys. Sin. 53 1373(in Chinese)[刘剑辉、丁永奎、谭 莉、胡智勇 2004 物理学报 53 1373]
[3] Agrawal G P 2001 Applications of Nonlinear Fiber Optics (New York:Academic) Chapter 6
[4] Chernikov S V, Dianov E M, Richardson D J, Payne D N 1993 Opt. Lett. 18 476
[5] Nakazawa M, Kubota H, Tamura K 1999 Opt. Lett. 24 318
[6] Wu Z H, Cao W H 2004 Laser and Infr. 34 408(in Chinese)[吴再华、曹文华 2004 激光与红外 34 408]
[7] Reeves-Hall P C, Lewis S A E, Chernikov S V, Taylor J R 2000 Electron. Lett. 36 622
[8] Inoue T, Tobioka H, Igarashi K J, Namiki S 2006 J. Lightwave Technol. 24 2510
[9] Inoue T, Tobioka H, Namiki S 2005 Phys. Rev. E 72 025601
[10] Ozeki Y, Inoue T 2006 Opt. Lett. 31 1606
[11] Maruta A, Inoue T, Nonaka Y, Yoshika Y 2002 IEEE J. Select. Topics Quantum Electron. 8 640
[12] Mostofi A, Hatami-Hanza H, Chu P L 1997 IEEE J. Quantum Electron. 33 620
[13] Pelusi M D, Liu H F 1997 IEEE J. Quantum Electron. 33 1430
-
[1] Tajima K 1987 Opt. Lett. 12 54
[2] Liu J H, Ding Y K, Tan L, Hu Z Y 2004 Acta Phys. Sin. 53 1373(in Chinese)[刘剑辉、丁永奎、谭 莉、胡智勇 2004 物理学报 53 1373]
[3] Agrawal G P 2001 Applications of Nonlinear Fiber Optics (New York:Academic) Chapter 6
[4] Chernikov S V, Dianov E M, Richardson D J, Payne D N 1993 Opt. Lett. 18 476
[5] Nakazawa M, Kubota H, Tamura K 1999 Opt. Lett. 24 318
[6] Wu Z H, Cao W H 2004 Laser and Infr. 34 408(in Chinese)[吴再华、曹文华 2004 激光与红外 34 408]
[7] Reeves-Hall P C, Lewis S A E, Chernikov S V, Taylor J R 2000 Electron. Lett. 36 622
[8] Inoue T, Tobioka H, Igarashi K J, Namiki S 2006 J. Lightwave Technol. 24 2510
[9] Inoue T, Tobioka H, Namiki S 2005 Phys. Rev. E 72 025601
[10] Ozeki Y, Inoue T 2006 Opt. Lett. 31 1606
[11] Maruta A, Inoue T, Nonaka Y, Yoshika Y 2002 IEEE J. Select. Topics Quantum Electron. 8 640
[12] Mostofi A, Hatami-Hanza H, Chu P L 1997 IEEE J. Quantum Electron. 33 620
[13] Pelusi M D, Liu H F 1997 IEEE J. Quantum Electron. 33 1430
计量
- 文章访问数: 8066
- PDF下载量: 437
- 被引次数: 0