-
本文研究了不同外部环境中原子气体在强激光抽运下的相干Raman散射光谱, 通过对固定无反弹原子气体(不考虑外部自由度)和自由原子气体增益光谱的理论计算, 得到了和Mollow实验结果基本一致的光谱曲线.通过与Mollow谱线结构的比较, 揭示了在微阱约束情况下原子气体存在不同于以上两种环境的高增益光谱, 该谱线直接反应了约束阱的性质, 谱线呈等间距梳状结构, 谱线尖锐分辨率高, 和传统的冷原子气体散射增益光谱的实验结果相比较有更大量级的光增益现象. 论文还分析了散射谱线增益的物理机理, 清晰地给出了约束情况下原子增益谱线的非线性Raman共振条件.In this paper, the Raman scattering spectra of cold atomic gas in different environments are closely calculated. Comparing the spectra from the atoms in free and trapped environments, the calculation result gives a right spectrum structure for the free atoms and reveals a distinct high-gain spectrum exhibiting a comb-like structure for the harmonic trapped atoms. The spectral peaks of the trapped spectrum are uniformly distributed and the distance between adjacent spectral peaks exactly equals the frequency of the trap. The nonlinear gain scheme and the gain conditions of the Raman scattering process are clearly given in this paper.
[1] Chu Steven, Hollberg L, Bjorkholm J E, Cable A, Ashkin A 1985 Phys. Rev. Lett. 55 48
[2] Pierre Meystre, Murray Sargent III Elements of Quantum Optics, 4th edition, Springer, Berlin Heidelberg New York, Chapter 9: Saturation Spectroscopy, p223 and Chapter 16: Resonance Fluorescence, p383
[3] Wu F Y, Ezekiel S, Ducloy M, Mollow B R 1997 Phys. Rev. Lett. 38 1077
[4] Guo J, Berman P R, Dubetsky B, Grynberg G 1992 Phys. Rev. A 46 1426 Brzozowski T M, Brzozowska M, Zachorowski J, Zawada M and Gawlik W 2005 Phys. Rev. A 71 013401
[5] Grison D, Lounis B, Salomon C, Courtois J Y, Grynberg G 1991 Europhys. Lett. 15 149
[6] Preston D W 1996 Am. J. Phys. 64 1432
[7] Razdan K, Van Baak D A 1999 Am. J. Phys. 67 832
[8] Bonifacio R, Salvo L De 1994 Nucl. Instrum. Methods Phys. Res. A 341 360 Bonifacio R 1995 Phys. Res. A 50 1716
[9] Berman P R 1999 Phys. Rev. A 59 585
[10] Hemmer P R, Bigelow N P, Katz D P, Shahriar M S, DeSalvo L, Bonifacio R 1996 Phys. Rev. Lett. 77 1468 Inouye S, Löw R F, Gupta S, Pfau T, Görlitz A, Gustavson T L, Pritchard D E, Ketterle W 2000 Phys. Rev. Lett. 85 4225
[11] Slama S, Bux S, Krenz G, Zimmermann C, Courteille P W 2007 Phys. Rev. Lett. 98 053603 Slama S, Krenz G, Bux S, Zimmermann C, Courteille P W 2007 Phys. Rev. A 75 063620
[12] Deng L, Payne M G, Hagley E W 2010 Phys. Rev. Lett. 104 050402
[13] Zhou X J 2009 Phys. Rev. A 80 023818
[14] S. Inouye, Chikkatur A P, Stamper-Kurn DM, Stenger J, Pritchard D E, Ketterle W 1999 Science 285 571
[15] Yang G J, Zhang Lin, Shu W 2003 Phys. Rev. A 68 063802
[16] Zhang L, Kong H Y, Yang G J 2006 Acta Phys. Sin. 55 5122 (in Chinese) [张林, 孔红艳, 杨国健 2006 物理学报 55 5122]
[17] Abate J A 1974 Opt. Commun. 10 269
[18] Kruse D, Cube C von, Zimmermann C, Courteille Ph W 2003 Phys. Rev. Lett. 91 183601
[19] Horak P, Gheri K M, Ritsch H 1995 Phys. Rev. A 52 554
[20] Guo J, Berman P R, Dubetsky B, Grynberg G 1992 Phys. Rev. A 46 1426
[21] Madey J M 1979 Nuovo Cimento 50 64 Bonifacio R, Meystre P, Moore G T, Scully M O 1980 Phys. Rev. A 21 2009
[22] Deng L, Hagley E W, Cao Q, Wang X R, Luo X Y, Wang R Q, Payne M G, Yang F, Zhou X J, Chen X, Zhan M S 2010 Phys. Rev. Lett. 105 220404
[23] Vogel W, de Matos Filho R L 1995 Phys. Rev. A 52 4214
-
[1] Chu Steven, Hollberg L, Bjorkholm J E, Cable A, Ashkin A 1985 Phys. Rev. Lett. 55 48
[2] Pierre Meystre, Murray Sargent III Elements of Quantum Optics, 4th edition, Springer, Berlin Heidelberg New York, Chapter 9: Saturation Spectroscopy, p223 and Chapter 16: Resonance Fluorescence, p383
[3] Wu F Y, Ezekiel S, Ducloy M, Mollow B R 1997 Phys. Rev. Lett. 38 1077
[4] Guo J, Berman P R, Dubetsky B, Grynberg G 1992 Phys. Rev. A 46 1426 Brzozowski T M, Brzozowska M, Zachorowski J, Zawada M and Gawlik W 2005 Phys. Rev. A 71 013401
[5] Grison D, Lounis B, Salomon C, Courtois J Y, Grynberg G 1991 Europhys. Lett. 15 149
[6] Preston D W 1996 Am. J. Phys. 64 1432
[7] Razdan K, Van Baak D A 1999 Am. J. Phys. 67 832
[8] Bonifacio R, Salvo L De 1994 Nucl. Instrum. Methods Phys. Res. A 341 360 Bonifacio R 1995 Phys. Res. A 50 1716
[9] Berman P R 1999 Phys. Rev. A 59 585
[10] Hemmer P R, Bigelow N P, Katz D P, Shahriar M S, DeSalvo L, Bonifacio R 1996 Phys. Rev. Lett. 77 1468 Inouye S, Löw R F, Gupta S, Pfau T, Görlitz A, Gustavson T L, Pritchard D E, Ketterle W 2000 Phys. Rev. Lett. 85 4225
[11] Slama S, Bux S, Krenz G, Zimmermann C, Courteille P W 2007 Phys. Rev. Lett. 98 053603 Slama S, Krenz G, Bux S, Zimmermann C, Courteille P W 2007 Phys. Rev. A 75 063620
[12] Deng L, Payne M G, Hagley E W 2010 Phys. Rev. Lett. 104 050402
[13] Zhou X J 2009 Phys. Rev. A 80 023818
[14] S. Inouye, Chikkatur A P, Stamper-Kurn DM, Stenger J, Pritchard D E, Ketterle W 1999 Science 285 571
[15] Yang G J, Zhang Lin, Shu W 2003 Phys. Rev. A 68 063802
[16] Zhang L, Kong H Y, Yang G J 2006 Acta Phys. Sin. 55 5122 (in Chinese) [张林, 孔红艳, 杨国健 2006 物理学报 55 5122]
[17] Abate J A 1974 Opt. Commun. 10 269
[18] Kruse D, Cube C von, Zimmermann C, Courteille Ph W 2003 Phys. Rev. Lett. 91 183601
[19] Horak P, Gheri K M, Ritsch H 1995 Phys. Rev. A 52 554
[20] Guo J, Berman P R, Dubetsky B, Grynberg G 1992 Phys. Rev. A 46 1426
[21] Madey J M 1979 Nuovo Cimento 50 64 Bonifacio R, Meystre P, Moore G T, Scully M O 1980 Phys. Rev. A 21 2009
[22] Deng L, Hagley E W, Cao Q, Wang X R, Luo X Y, Wang R Q, Payne M G, Yang F, Zhou X J, Chen X, Zhan M S 2010 Phys. Rev. Lett. 105 220404
[23] Vogel W, de Matos Filho R L 1995 Phys. Rev. A 52 4214
计量
- 文章访问数: 6321
- PDF下载量: 449
- 被引次数: 0