搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

乏燃料贮运用铝基碳化硼复合材料的屏蔽性能计算

戴龙泽 刘希琴 刘子利 丁丁

引用本文:
Citation:

乏燃料贮运用铝基碳化硼复合材料的屏蔽性能计算

戴龙泽, 刘希琴, 刘子利, 丁丁

Shielding property calculation of B4C/Al composites for spent fuel transportation and storge

Dai Long-Ze, Liu Xi-Qin, Liu Zi-Li, Ding Ding
PDF
导出引用
  • 采用蒙特卡罗方法, 利用MCNP程序计算了在中子能量为0.5–20 MeV, 235U核热中子裂变源条件下, 厚度为3–9 cm、碳化硼含量5%–15%的铝基碳化硼复合材料在空气、水、200–1400 ppm (1 ppm=10-6) 硼酸溶液介质中的中子透射系数. 结果表明: B4C/Al复合材料的透射系数随碳化硼含量和材料厚度的增加而减少, 随中子能量的升高而增大, 而硼酸浓度的改变对中子透射系数影响不大. B4C/Al复合材料在水中比硼酸中更能发挥其屏蔽效果, 在空气中屏蔽特性显现出“反转”现象, 中子能量高于5 MeV时透射系数几乎没有变化. 在裂变源条件下的B4C/Al复合材料中子透射系数均比稳定源20 MeV 低. 介质的中子屏蔽效果是硼酸溶液>水> 空气, 水介质的中子透射系数与介质厚度呈指数下降关系, 裂变源和稳定源条件下分别近似为e-0.71x和e-0.669x, x为厚度(cm).
    MCNP program is used to calculate the neutron transmission coefficient of 3–9 cm-thick neutron absorber material B4C/Al composite with 5%–15% B4C content in air, water, 200–1400 ppm (1 ppm=10-6) H3BO3 solution, irradiated by 0.5–20 MeV neutrons and 235U thermal neutron fission source. The results show that the transmission coefficient of B4C/Al composite decreases with the increase of the content of B4C and the thickness of material, but increases with the increase of neutron energy, and has little influence from the variation in H3BO3 solution concentration. A better shielding effect of B4C/Al composite is displayed in water than in H3BO3 solution, and a “reversal” phenomenon of the shielding effect occurs in air. The neutron transmission coefficient is almost unchanged with neutron energy when neutron energy is higher than the 5–15 MeV. The neutron transmission coefficient of B4C/Al composite irradiated under a fission source is lower than under a steady 20 MeV neutron source. Ranking the shielding performances of media, the sequence is H3BO3 solution > water > air, and the exponential decay relationships between neutron transmission coefficient and thickness of medium can be expressed as e-0.71x and e-0.669x, where x is thickness of medium in cm.
    [1]

    Tsubota M, Oikawa M 2005 Bull. Iron Steel Inst. Japan 10 25

    [2]

    Moldoban P, Popesus G 2004 J. Metals 56 59

    [3]

    Mohantya R M, Balasubramaniana K, Seshadri S K 2008 Mater. Sci. Eng. 498 42

    [4]

    Du Pont J N, Robino C V, Mizia R E 2003 J. Mater. Eng. Perform 2 206

    [5]

    Lindquist K, Kine D E, Lambert R 1994 J. Nucl. Mater. 217 2223

    [6]

    Kenneth D 2009 Nuclear Engineering Handbook (New York: CBC Press) p152

    [7]

    Ding H D, Qian Y C, Fu S L, Sun M Y, Zhen X H 2006 J. Acad. Arm. Force Eng. 20 88 (in Chinese) [丁华东, 钱耀川, 傅苏黎, 孙明友, 郑晓辉 2006 装甲兵工程学院学报 20 88]

    [8]

    Peng K W, Wu W Y, Xu J Y, Tu G F 2008 Rare Metal Cemd. Carb. 36 16 (in Chinese) [彭可武, 吴文远, 徐璟玉, 涂贛峰 2008 稀有金属与硬质合金 36 16]

    [9]

    L P, Ru H Q, Yue X L, Yu Y 2009 Rare Metal Mater. Eng. 38 536 (in Chinese) [吕鹏, 茹红强, 岳新亮, 喻艳 2009 稀有金属材料与工程 38 536]

    [10]

    Zhang P, Li Y L, Wang W X, Gao Z P, Wang B D 2013 J. Nucl. Mater. 437 350

    [11]

    Shi J M 2011 M. S. Dissertation (Mianyang: China Academy of Engineering physic) (in Chinese) [石建敏 2011 硕士学位论文 (绵阳: 中国工程物理研究院)]

    [12]

    Yin W, Liang J Q 2003 Chin. Phys. B 12 599

    [13]

    Song Y S, Ye Y L, Ge Y C, L L H, Qu L S, Jiang D X, Hua H, Zhen T, Li Z H, Li X Q, Lou J L, Lu F, Fan F Y, Cao Z X, Li Q T, Xiao J 2009 Chin. Phys. C 33 860

    [14]

    Moosakhani A, Nasrabadi M N, Timuri B 2011 Nucl. Eng. Des. 241 1459

    [15]

    Marshall R, Richard A, Arthur H, John R 2007 Nucl. Instrum. Methods Phys. Res. Sect. B 261 90

    [16]

    Zhang F Q, Yang J L, Li Z H, Ying C T, Liu G J 2007 Acta Phys. Sin. 56 3577 (in Chinese) [章法强, 杨建伦, 李正宏, 应纯同, 刘广均 2007 物理学报 56 3577]

    [17]

    Kalaiselvan K, Murugan N, Parameswaran S 2011 Mater. Des. 32 4004

    [18]

    Dai C J, Liu X Q, Liu Z L 2013 Nucl. Tech. 36 17 (in Chinese) [戴春娟, 刘希琴, 刘子利 2013 核技术 36 17]

    [19]

    Zeng X M, Zhou P, Qin P Z, Bao M, Guo G S, Xu Z Y 2011 Nucl. Tech. 34 188 (in Chinese) [曾心苗, 周鹏, 秦培中, 鲍矛, 郭广水, 许自炎 2011 核技术 34 188]

    [20]

    Zhao M Y, Yang B, Liu Y B, Zeng L 2011 Energy Res. Manage. 4 23 (in Chinese) [赵梦云, 杨波, 刘义保, 曾磊 2011 能源研究与管理 4 23]

    [21]

    Mao X Y, Wang M, Zeng D C 2007 Atom. Energy Sci. Tech. 41 404 (in Chinese) [毛孝勇, 王敏, 曾德承 2007 原子能科学技术 41 404]

  • [1]

    Tsubota M, Oikawa M 2005 Bull. Iron Steel Inst. Japan 10 25

    [2]

    Moldoban P, Popesus G 2004 J. Metals 56 59

    [3]

    Mohantya R M, Balasubramaniana K, Seshadri S K 2008 Mater. Sci. Eng. 498 42

    [4]

    Du Pont J N, Robino C V, Mizia R E 2003 J. Mater. Eng. Perform 2 206

    [5]

    Lindquist K, Kine D E, Lambert R 1994 J. Nucl. Mater. 217 2223

    [6]

    Kenneth D 2009 Nuclear Engineering Handbook (New York: CBC Press) p152

    [7]

    Ding H D, Qian Y C, Fu S L, Sun M Y, Zhen X H 2006 J. Acad. Arm. Force Eng. 20 88 (in Chinese) [丁华东, 钱耀川, 傅苏黎, 孙明友, 郑晓辉 2006 装甲兵工程学院学报 20 88]

    [8]

    Peng K W, Wu W Y, Xu J Y, Tu G F 2008 Rare Metal Cemd. Carb. 36 16 (in Chinese) [彭可武, 吴文远, 徐璟玉, 涂贛峰 2008 稀有金属与硬质合金 36 16]

    [9]

    L P, Ru H Q, Yue X L, Yu Y 2009 Rare Metal Mater. Eng. 38 536 (in Chinese) [吕鹏, 茹红强, 岳新亮, 喻艳 2009 稀有金属材料与工程 38 536]

    [10]

    Zhang P, Li Y L, Wang W X, Gao Z P, Wang B D 2013 J. Nucl. Mater. 437 350

    [11]

    Shi J M 2011 M. S. Dissertation (Mianyang: China Academy of Engineering physic) (in Chinese) [石建敏 2011 硕士学位论文 (绵阳: 中国工程物理研究院)]

    [12]

    Yin W, Liang J Q 2003 Chin. Phys. B 12 599

    [13]

    Song Y S, Ye Y L, Ge Y C, L L H, Qu L S, Jiang D X, Hua H, Zhen T, Li Z H, Li X Q, Lou J L, Lu F, Fan F Y, Cao Z X, Li Q T, Xiao J 2009 Chin. Phys. C 33 860

    [14]

    Moosakhani A, Nasrabadi M N, Timuri B 2011 Nucl. Eng. Des. 241 1459

    [15]

    Marshall R, Richard A, Arthur H, John R 2007 Nucl. Instrum. Methods Phys. Res. Sect. B 261 90

    [16]

    Zhang F Q, Yang J L, Li Z H, Ying C T, Liu G J 2007 Acta Phys. Sin. 56 3577 (in Chinese) [章法强, 杨建伦, 李正宏, 应纯同, 刘广均 2007 物理学报 56 3577]

    [17]

    Kalaiselvan K, Murugan N, Parameswaran S 2011 Mater. Des. 32 4004

    [18]

    Dai C J, Liu X Q, Liu Z L 2013 Nucl. Tech. 36 17 (in Chinese) [戴春娟, 刘希琴, 刘子利 2013 核技术 36 17]

    [19]

    Zeng X M, Zhou P, Qin P Z, Bao M, Guo G S, Xu Z Y 2011 Nucl. Tech. 34 188 (in Chinese) [曾心苗, 周鹏, 秦培中, 鲍矛, 郭广水, 许自炎 2011 核技术 34 188]

    [20]

    Zhao M Y, Yang B, Liu Y B, Zeng L 2011 Energy Res. Manage. 4 23 (in Chinese) [赵梦云, 杨波, 刘义保, 曾磊 2011 能源研究与管理 4 23]

    [21]

    Mao X Y, Wang M, Zeng D C 2007 Atom. Energy Sci. Tech. 41 404 (in Chinese) [毛孝勇, 王敏, 曾德承 2007 原子能科学技术 41 404]

计量
  • 文章访问数:  2462
  • PDF下载量:  572
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-24
  • 修回日期:  2013-08-06
  • 刊出日期:  2013-11-05

乏燃料贮运用铝基碳化硼复合材料的屏蔽性能计算

  • 1. 南京航空航天大学材料科学与技术学院, 南京 210016

摘要: 采用蒙特卡罗方法, 利用MCNP程序计算了在中子能量为0.5–20 MeV, 235U核热中子裂变源条件下, 厚度为3–9 cm、碳化硼含量5%–15%的铝基碳化硼复合材料在空气、水、200–1400 ppm (1 ppm=10-6) 硼酸溶液介质中的中子透射系数. 结果表明: B4C/Al复合材料的透射系数随碳化硼含量和材料厚度的增加而减少, 随中子能量的升高而增大, 而硼酸浓度的改变对中子透射系数影响不大. B4C/Al复合材料在水中比硼酸中更能发挥其屏蔽效果, 在空气中屏蔽特性显现出“反转”现象, 中子能量高于5 MeV时透射系数几乎没有变化. 在裂变源条件下的B4C/Al复合材料中子透射系数均比稳定源20 MeV 低. 介质的中子屏蔽效果是硼酸溶液>水> 空气, 水介质的中子透射系数与介质厚度呈指数下降关系, 裂变源和稳定源条件下分别近似为e-0.71x和e-0.669x, x为厚度(cm).

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回