搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双平行马赫曾德调制器的动态可调光载波边带比光单边带调制:理论分析与实验研究

李晶 宁提纲 裴丽 简伟 油海东 陈宏尧 张婵 李超

引用本文:
Citation:

基于双平行马赫曾德调制器的动态可调光载波边带比光单边带调制:理论分析与实验研究

李晶, 宁提纲, 裴丽, 简伟, 油海东, 陈宏尧, 张婵, 李超

Optical single sideband modulation with continuously tunable optical carrier-to-sideband ratio by employing a dual-parallel Mach-Zehnder modulator

Li Jing, Ning Ti-Gang, Pei Li, Jian Wei, You Hai-Dong, Chen Hong-Yao, Zhang Chan, Li Chao
PDF
导出引用
  • 理论分析并实验研究了一种基于双平行马赫曾德调制器(DP-MZM)具有动态光载波边带比(OCSR)调谐能力的光单边带(OSSB) 调制实现方案, 方案利用DP-MZM内部集成的三个独立的调制单元, 分别实现OSSB调制、光载波移相和光信号干涉, 最终, 仅需改变调制器的一个偏置点, 就实现了OCSR的动态调谐, 实验得到了小信号调制(调制系数m=0.2)下, OCSR的可调范围-20.8–23.5 dB. 并分析了OCSR与射频功率之间的对应关系, 通过本方案调谐至最佳的OCSR可提高模拟光链路接收灵敏度.
    We propose and demonstrate an optical single sideband (OSSB) modulation approach with continuously tunable optical carrier-to-sideband ratio (OCSR) theoretically and experimentally. In the proposal, one dual-parallel Mach-Zehnder modulator (DP-MZM) acts as a key component. By properly setting the modulator, three separate sub-modulators inside the DP-MZM can be used to realize the OSSB modulation, optical carrier phase-shift, and lightwave interference. By adjusting the bias voltage of one sub-modulator, the OCSR can be tuned continuously. In the experiment, the tuning range of OCSR is found to be between-20.8 dB and 23.5 dB at modulation index m=0.2. We also analyze the relationship between the OCSR and RF power after detection. It is found that with properly adjusting the OCSR, the receiver sensitivity can be greatly improved.
    • 基金项目: 国家自然科学基金(批准号: 61177069, 61275076,61275092)和国家重点基础研究计划(批准号: 2010CB328206)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61177069, 61275076, 61275092) and National Basic Research Program of China (Grant No. 2010CB328206).
    [1]

    Pei L, Liu G H, Ning T G, Gao S, Li J, Zhang Y J 2012 Acta Phys. Sin. 61 064203 (in Chinese) [裴丽, 刘观辉, 宁提纲, 高嵩, 李晶, 张义军 2012 物理学报 61 064203]

    [2]

    Li J, Ning T G, Pei L, Qi C H 2009 Opt. Lett. 34 3136

    [3]

    Li J, Ning T G, Pei L, Qi C H, Zhou Q, Hu X D, Gao S 2010 Opt. Lett. 35 3619

    [4]

    Chen Y L, Wu Z M, Tang X, Lin X D, Wei Y, Xia G Q 2013 Acta Phys. Sin. 62 104207 (in Chinese) [陈于淋, 吴正茂, 唐曦, 林晓东, 魏月, 夏光琼 2013 物理学报 62 104207]

    [5]

    Gao S, Pei L, Ning T G, Qi C H, Liu G H, Li J 2012 Acta Phys. Sin. 61 124204 (in Chinese) [高嵩, 裴丽, 宁提纲, 祁春慧, 刘观辉, 李晶 2012 物理学报 61 124204]

    [6]

    Liu S X, Wang Y C, He H C, Zhang M J 2009 Acta Phys. Sin. 58 7241 (in Chinese) [牛生晓, 王云才, 贺虎成, 张明江2009 物理学报 58 7241]

    [7]

    Ye Q, Liu F, Cai H W, Qu R H, Fang Z J 2005 Chin. Phys. 14 969

    [8]

    Meslener G 1984 IEEE J. Quantum Electron. 20 1208

    [9]

    Elrefaie A F, Wagner R E, Atlas D A, Daut D G 1988 J. Lightwave Technol. 6 704

    [10]

    Hraimel B, Zhang X P, Mohamed M, Wu K 2009 J. Opt. Commun. Netw. 1 331

    [11]

    Liu H J, Ren B, Feng J C 2012 Chin. Phys. B 21 40501

    [12]

    Li S Y, Zheng X P, Zhang H Y, Zhou B K 2011 Opt. Lett. 36 546

    [13]

    Zhang H T, Pan S L, Huang M H, Chen X F 2012 Opt. Lett. 37 866

    [14]

    Shen Y C, Zhang X M, Chen K S 2005 IEEE Photon. Technol. Lett. 17 1277

    [15]

    Attygalle M, Lim C, Pendock G J, Nirmalathas A, Edvell G 2005 IEEE Photonics. Technol. Lett. 17 190

    [16]

    Li W, Zhu N H, Wang L X Opt. Commun. 284 3437

    [17]

    Li J, Ning T G, Pei L, Gao S, You H D, Chen H Y, Jia N 2013 Opt. Laser Technol. 48 210

    [18]

    Li J, Ning T G, Pei L, Qi C H, Hu X D, Zhou Q 2010 IEEE Photon. Technol. Lett. 22 516

    [19]

    Hraimel B, Zhang X P, Pei Y Q, Wu K, Liu T J, Xu T F, Nie Q H 2011 J. Lightwave Technol. 29 775

  • [1]

    Pei L, Liu G H, Ning T G, Gao S, Li J, Zhang Y J 2012 Acta Phys. Sin. 61 064203 (in Chinese) [裴丽, 刘观辉, 宁提纲, 高嵩, 李晶, 张义军 2012 物理学报 61 064203]

    [2]

    Li J, Ning T G, Pei L, Qi C H 2009 Opt. Lett. 34 3136

    [3]

    Li J, Ning T G, Pei L, Qi C H, Zhou Q, Hu X D, Gao S 2010 Opt. Lett. 35 3619

    [4]

    Chen Y L, Wu Z M, Tang X, Lin X D, Wei Y, Xia G Q 2013 Acta Phys. Sin. 62 104207 (in Chinese) [陈于淋, 吴正茂, 唐曦, 林晓东, 魏月, 夏光琼 2013 物理学报 62 104207]

    [5]

    Gao S, Pei L, Ning T G, Qi C H, Liu G H, Li J 2012 Acta Phys. Sin. 61 124204 (in Chinese) [高嵩, 裴丽, 宁提纲, 祁春慧, 刘观辉, 李晶 2012 物理学报 61 124204]

    [6]

    Liu S X, Wang Y C, He H C, Zhang M J 2009 Acta Phys. Sin. 58 7241 (in Chinese) [牛生晓, 王云才, 贺虎成, 张明江2009 物理学报 58 7241]

    [7]

    Ye Q, Liu F, Cai H W, Qu R H, Fang Z J 2005 Chin. Phys. 14 969

    [8]

    Meslener G 1984 IEEE J. Quantum Electron. 20 1208

    [9]

    Elrefaie A F, Wagner R E, Atlas D A, Daut D G 1988 J. Lightwave Technol. 6 704

    [10]

    Hraimel B, Zhang X P, Mohamed M, Wu K 2009 J. Opt. Commun. Netw. 1 331

    [11]

    Liu H J, Ren B, Feng J C 2012 Chin. Phys. B 21 40501

    [12]

    Li S Y, Zheng X P, Zhang H Y, Zhou B K 2011 Opt. Lett. 36 546

    [13]

    Zhang H T, Pan S L, Huang M H, Chen X F 2012 Opt. Lett. 37 866

    [14]

    Shen Y C, Zhang X M, Chen K S 2005 IEEE Photon. Technol. Lett. 17 1277

    [15]

    Attygalle M, Lim C, Pendock G J, Nirmalathas A, Edvell G 2005 IEEE Photonics. Technol. Lett. 17 190

    [16]

    Li W, Zhu N H, Wang L X Opt. Commun. 284 3437

    [17]

    Li J, Ning T G, Pei L, Gao S, You H D, Chen H Y, Jia N 2013 Opt. Laser Technol. 48 210

    [18]

    Li J, Ning T G, Pei L, Qi C H, Hu X D, Zhou Q 2010 IEEE Photon. Technol. Lett. 22 516

    [19]

    Hraimel B, Zhang X P, Pei Y Q, Wu K, Liu T J, Xu T F, Nie Q H 2011 J. Lightwave Technol. 29 775

计量
  • 文章访问数:  4685
  • PDF下载量:  943
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-29
  • 修回日期:  2013-08-21
  • 刊出日期:  2013-11-05

基于双平行马赫曾德调制器的动态可调光载波边带比光单边带调制:理论分析与实验研究

  • 1. 北京交通大学光波技术研究所, 北京 100044
    基金项目: 国家自然科学基金(批准号: 61177069, 61275076,61275092)和国家重点基础研究计划(批准号: 2010CB328206)资助的课题.

摘要: 理论分析并实验研究了一种基于双平行马赫曾德调制器(DP-MZM)具有动态光载波边带比(OCSR)调谐能力的光单边带(OSSB) 调制实现方案, 方案利用DP-MZM内部集成的三个独立的调制单元, 分别实现OSSB调制、光载波移相和光信号干涉, 最终, 仅需改变调制器的一个偏置点, 就实现了OCSR的动态调谐, 实验得到了小信号调制(调制系数m=0.2)下, OCSR的可调范围-20.8–23.5 dB. 并分析了OCSR与射频功率之间的对应关系, 通过本方案调谐至最佳的OCSR可提高模拟光链路接收灵敏度.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回