搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于差分Pattern时延差编码和海豚whistles信号的仿生水声通信技术研究

韩笑 殷敬伟 郭龙祥 张晓

引用本文:
Citation:

基于差分Pattern时延差编码和海豚whistles信号的仿生水声通信技术研究

韩笑, 殷敬伟, 郭龙祥, 张晓

Research on bionic underwater acoustic communication technology based on differential Pattern time delay shift coding and dolphin whistles

Han Xiao, Yin Jing-Wei, Guo Long-Xiang, Zhang Xiao
PDF
导出引用
  • 为解决传统的隐蔽水声通信方法带来的通信性能降低问题, 提出了一种将差分 Pattern 时延差编码通信体制与海豚whistles信号相结合的仿生水声通信技术. 海豚whistles信号频带较窄且各信息码元间隔不等、码元之间互相关性较弱, 选取whistles信号作同步码和Pattern 码, 并以相邻whistles信号之间的时延差值携带信息. 这种仿生的水声通信信号不易被敌方探测、截获, 且差分Pattern时延差特殊的编码方式也不易使信息被破译, 因此该水声通信技术具有较强的隐蔽性和保密性, 且在抗码间干扰以及抗多普勒效应方面具有优异性能. 本文对系统进行了水池实验, 在信噪比为0 dB、存在相对运动时实现了通信速率为67 bit/s的低误码数据传输, 验证了系统的有效性、稳健性和隐蔽性.
    Regarding the performance degradation caused by the traditional method of covert underwater acoustic communication, in this paper we propose a bionic underwater acoustic communication technology on the basis of differential Pattern time delay shift coding system and dolphin whistles. The signal band of dolphin whistles is narrow and the intervals between information signals are different, and the cross-correlation is very weak. Dolphin whistles are used for synchronization and Patterns, for the time interval between dolphin whistles conveys the information bits. The mimicked version of communication signal is not easy to detect and intercept, and the special encoding method of differential Pattern time delay shift also makes the information not easy to decipher, so this bionic underwater acoustic communication technology has strong covert and confidential nature and it also has an excellent performance in anti inter-symbol interference and anti Doppler effect. A tank experiment is conducted for this system. At SNR 0 dB and relative movement, the user message is recovered at an effective data rate of 67 bit/s with low bit error. It is proved that the system has an effectiveness, robustness and covert nature.
    • 基金项目: 国家自然科学基金项目(批准号: 51179034, 60802060)、中央高校基本科研业务费专项资金(批准号: P223513012)和博士后基金项目(批准号: 2013M531015)资助的课题
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51179034, 60802060), the Fundamental Research Funds of the Central University, China (Grant No. P223513012), and the China Postdoctoral Science Foundation (Grant No. 2013M531015).
    [1]

    Meng D, Wang H B, Wu L X, Wang J 2008 Technical Acoustics 27 464 (in Chinese) [孟荻, 王海斌, 吴立新, 汪俊 2008 声学技术 27 464]

    [2]

    Leus G, van Walree P A 2008 IEEE J. Sel. Area Commun. 26 1662

    [3]

    Yang T C, Yang W B 2008 J. Acoust. Soc. Am. 124 3632

    [4]

    Liu S Z, Qiao G, Ismail A 2013 J. Acoust. Soc. Am. 133 EL300

    [5]

    Zhang T W, Yang K D, Ma Y L 2010 Chin. Phys. B 19 124301

    [6]

    Baumgarter M F, Mussoline S E 2011 J. Acoust. Soc. Am. 129 2889

    [7]

    Hawkins E R 2010 J. Acoust. Soc. Am. 128 924

    [8]

    Masahiko F, Tomonari A, Yasushi N 2009 J. Acoust. Soc. Am. 124 3440

    [9]

    Sims P Q, Vaughn R, Hung S K, Wuersig B 2012 J. Acoust. Soc. Am. 131 EL48

    [10]

    Finneran J J 2013 J. Acoust. Soc. Am. 133 1796

    [11]

    Janik V M, Sayigh L S 2013 J. Comp. Physiol. A 199 479

    [12]

    Yin J W, Hui J Y, Wang Y L, Hui J 2007 Acta Phys. Sin. 56 5915 (in Chinese) [殷敬伟, 惠俊英, 王逸林, 惠娟 2007 物理学报 56 5915]

    [13]

    Yin J W, Hui J Y, Guo L X 2008 Acta Phys. Sin. 57 1753 (in Chinese) [殷敬伟, 惠俊英, 郭龙祥 2008 物理学报 57 1753]

    [14]

    Yin J W, Zhang X, Sheng X L, Sun C 2012 J. Commun. 33 112 (in Chinese) [殷敬伟, 张晓, 生雪莉, 孙超 2012 通信学报 33 112]

    [15]

    Yin J W, Hui J Y, Wang Y L, Yao Z X 2006 J. Marine Sci. Appl. 5 51

    [16]

    Guo L X, Mei J D, Zhang L 2011 Technical Acoustics 30 64 (in Chinese) [郭龙祥, 梅继丹, 张亮 2011 声学技术 30 64]

  • [1]

    Meng D, Wang H B, Wu L X, Wang J 2008 Technical Acoustics 27 464 (in Chinese) [孟荻, 王海斌, 吴立新, 汪俊 2008 声学技术 27 464]

    [2]

    Leus G, van Walree P A 2008 IEEE J. Sel. Area Commun. 26 1662

    [3]

    Yang T C, Yang W B 2008 J. Acoust. Soc. Am. 124 3632

    [4]

    Liu S Z, Qiao G, Ismail A 2013 J. Acoust. Soc. Am. 133 EL300

    [5]

    Zhang T W, Yang K D, Ma Y L 2010 Chin. Phys. B 19 124301

    [6]

    Baumgarter M F, Mussoline S E 2011 J. Acoust. Soc. Am. 129 2889

    [7]

    Hawkins E R 2010 J. Acoust. Soc. Am. 128 924

    [8]

    Masahiko F, Tomonari A, Yasushi N 2009 J. Acoust. Soc. Am. 124 3440

    [9]

    Sims P Q, Vaughn R, Hung S K, Wuersig B 2012 J. Acoust. Soc. Am. 131 EL48

    [10]

    Finneran J J 2013 J. Acoust. Soc. Am. 133 1796

    [11]

    Janik V M, Sayigh L S 2013 J. Comp. Physiol. A 199 479

    [12]

    Yin J W, Hui J Y, Wang Y L, Hui J 2007 Acta Phys. Sin. 56 5915 (in Chinese) [殷敬伟, 惠俊英, 王逸林, 惠娟 2007 物理学报 56 5915]

    [13]

    Yin J W, Hui J Y, Guo L X 2008 Acta Phys. Sin. 57 1753 (in Chinese) [殷敬伟, 惠俊英, 郭龙祥 2008 物理学报 57 1753]

    [14]

    Yin J W, Zhang X, Sheng X L, Sun C 2012 J. Commun. 33 112 (in Chinese) [殷敬伟, 张晓, 生雪莉, 孙超 2012 通信学报 33 112]

    [15]

    Yin J W, Hui J Y, Wang Y L, Yao Z X 2006 J. Marine Sci. Appl. 5 51

    [16]

    Guo L X, Mei J D, Zhang L 2011 Technical Acoustics 30 64 (in Chinese) [郭龙祥, 梅继丹, 张亮 2011 声学技术 30 64]

计量
  • 文章访问数:  3305
  • PDF下载量:  1141
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-22
  • 修回日期:  2013-06-27
  • 刊出日期:  2013-11-05

基于差分Pattern时延差编码和海豚whistles信号的仿生水声通信技术研究

  • 1. 哈尔滨工程大学, 水声技术重点实验室, 哈尔滨 150001
    基金项目: 国家自然科学基金项目(批准号: 51179034, 60802060)、中央高校基本科研业务费专项资金(批准号: P223513012)和博士后基金项目(批准号: 2013M531015)资助的课题

摘要: 为解决传统的隐蔽水声通信方法带来的通信性能降低问题, 提出了一种将差分 Pattern 时延差编码通信体制与海豚whistles信号相结合的仿生水声通信技术. 海豚whistles信号频带较窄且各信息码元间隔不等、码元之间互相关性较弱, 选取whistles信号作同步码和Pattern 码, 并以相邻whistles信号之间的时延差值携带信息. 这种仿生的水声通信信号不易被敌方探测、截获, 且差分Pattern时延差特殊的编码方式也不易使信息被破译, 因此该水声通信技术具有较强的隐蔽性和保密性, 且在抗码间干扰以及抗多普勒效应方面具有优异性能. 本文对系统进行了水池实验, 在信噪比为0 dB、存在相对运动时实现了通信速率为67 bit/s的低误码数据传输, 验证了系统的有效性、稳健性和隐蔽性.

English Abstract

参考文献 (16)

目录

    /

    返回文章
    返回