搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

功率谱反演大气湍流随机相位屏采样方法的研究

蔡冬梅 王昆 贾鹏 王东 刘建霞

引用本文:
Citation:

功率谱反演大气湍流随机相位屏采样方法的研究

蔡冬梅, 王昆, 贾鹏, 王东, 刘建霞

Sampling methods of power spectral density method simulating atmospheric turbulence phase screen

Cai Dong-Mei, Wang Kun, Jia Peng, Wang Dong, Liu Jian-Xia
PDF
导出引用
  • 从产生大气湍流随机相位屏的功率谱反演法原理出发,分析了均匀采样造成的随机相位屏大量低频信息泄漏的不足,提出利用非均匀采样方法对功率谱进行滤波产生随机相位屏. 建立了非均匀采样模型,并分析比较了两种采样方法覆盖的采样频率范围和单边采样频率区域的湍流功率,理论证明了非均匀采样功率谱反演产生大气湍流随机相位屏的可行性和有效性. 针对大气湍流的Kolmogorov 谱,分别仿真计算了两种采样模型下功率谱反演生成的大气湍流随机相位屏. 仿真结果表明,在不增加采样点和计算量条件下,非均匀采样方法生成的大气湍流随机相位屏具有丰富的低频和高频信息,有效改善了传统功率谱反演大气湍流随机相位屏时低频信息严重不足的缺陷.
    Based on power spectral density method, the uniform sampling leading to the leakage of low frequency in atmosphere phase screens is analyzed. A new method - non-uniform sampling is proposed. The non-uniform sampling is modeled. The covered sampling frequency regions and the powers of single sampling region by the two sampling methods are discussed and compared. The new method proves to be effective and feasible. For the Kolmogorov spectrum of atmospheric turbulence, the numerical simulation phase screens are generated by the two sampling methods. The simulation results show that the random phase screens generated by the non-uniform sampling method under the condition of increasing neither sampling number nor computation burden, possesses rich high and low frequency information.
    • 基金项目: 山西省自然科学基金(批准号:2013011006-4)、中国科学院自适应光学重点实验室基金(批准号:LAOF201301)和微细加工光学技术国家重点实验室基金(批准号:KFS4)资助的课题.
    • Funds: Project supported by the Natural Science Foundation of Shanxi Province, China (Grant No. 2013011006-4), the Foundation of Key Laboratory of Adaptive Optics, Chinese Academy of Sciences, China (Grant No. LAOF201301), and the Foundation of State Key Laboratory of Optical Technologies for Micro-fabrication, China (Grant No. KFS4).
    [1]

    Zhang E T, J L, L B D 2009 Chin. Phys. B 18 571

    [2]

    Jin X L 2010 Acta Phys. Sin. 59 692 (in Chinese) [季小玲 2010 物理学报 59 692]

    [3]

    Liu Y Y, L Q B, Zhang W X 2012 Acta Phys. Sin. 61 124201 (in Chinese) [刘杨阳, 吕群波, 张文喜 2012 物理学报 61 124201]

    [4]

    Zhao P T, Zhang Y C, Wang L, Zhao Y F, Su J, Fang X, Cao K F, Du X Y 2007 Chin. Phys. 16 2486

    [5]

    Du J, Ren D M, Zhao W J, Qu Y C, Chen Z L, Geng L J 2013 Chin. Phys. B 22 024211

    [6]

    Lane R G, Glindemann A, Dainty J C 1992 Waves in Random Media 2 209

    [7]

    Wang J X, Bai F Z, Ning Y, Huang L H, Jiang W H 2011 Acta Phys. Sin. 60 029501 (in Chinese) [王建新, 白福忠, 宁禹, 黄林海, 姜文汉 2011 物理学报 60 029501]

    [8]

    McGlamery B L 1996 J.Opt. Soc. Am. A 57 293

    [9]

    He W U, Wu J 2008 Proc. SPIE 6832 68321

    [10]

    Roddier N 1990 Opt. Eng. 29 1174

    [11]

    Zhang H M, Li X Y 2006 Opto-Electron. Eng. 33 14 (in Chinese) [张慧敏, 李新阳 2006 光电工程 33 14]

    [12]

    Bagchi S 1996 Trans. Circuits Syst. 43 434

  • [1]

    Zhang E T, J L, L B D 2009 Chin. Phys. B 18 571

    [2]

    Jin X L 2010 Acta Phys. Sin. 59 692 (in Chinese) [季小玲 2010 物理学报 59 692]

    [3]

    Liu Y Y, L Q B, Zhang W X 2012 Acta Phys. Sin. 61 124201 (in Chinese) [刘杨阳, 吕群波, 张文喜 2012 物理学报 61 124201]

    [4]

    Zhao P T, Zhang Y C, Wang L, Zhao Y F, Su J, Fang X, Cao K F, Du X Y 2007 Chin. Phys. 16 2486

    [5]

    Du J, Ren D M, Zhao W J, Qu Y C, Chen Z L, Geng L J 2013 Chin. Phys. B 22 024211

    [6]

    Lane R G, Glindemann A, Dainty J C 1992 Waves in Random Media 2 209

    [7]

    Wang J X, Bai F Z, Ning Y, Huang L H, Jiang W H 2011 Acta Phys. Sin. 60 029501 (in Chinese) [王建新, 白福忠, 宁禹, 黄林海, 姜文汉 2011 物理学报 60 029501]

    [8]

    McGlamery B L 1996 J.Opt. Soc. Am. A 57 293

    [9]

    He W U, Wu J 2008 Proc. SPIE 6832 68321

    [10]

    Roddier N 1990 Opt. Eng. 29 1174

    [11]

    Zhang H M, Li X Y 2006 Opto-Electron. Eng. 33 14 (in Chinese) [张慧敏, 李新阳 2006 光电工程 33 14]

    [12]

    Bagchi S 1996 Trans. Circuits Syst. 43 434

计量
  • 文章访问数:  3139
  • PDF下载量:  19055
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-30
  • 修回日期:  2014-01-15
  • 刊出日期:  2014-05-05

功率谱反演大气湍流随机相位屏采样方法的研究

  • 1. 太原理工大学物理与光电工程学院, 太原 030024;
  • 2. 太原理工大学信息工程学院, 太原 030024
    基金项目: 

    山西省自然科学基金(批准号:2013011006-4)、中国科学院自适应光学重点实验室基金(批准号:LAOF201301)和微细加工光学技术国家重点实验室基金(批准号:KFS4)资助的课题.

摘要: 从产生大气湍流随机相位屏的功率谱反演法原理出发,分析了均匀采样造成的随机相位屏大量低频信息泄漏的不足,提出利用非均匀采样方法对功率谱进行滤波产生随机相位屏. 建立了非均匀采样模型,并分析比较了两种采样方法覆盖的采样频率范围和单边采样频率区域的湍流功率,理论证明了非均匀采样功率谱反演产生大气湍流随机相位屏的可行性和有效性. 针对大气湍流的Kolmogorov 谱,分别仿真计算了两种采样模型下功率谱反演生成的大气湍流随机相位屏. 仿真结果表明,在不增加采样点和计算量条件下,非均匀采样方法生成的大气湍流随机相位屏具有丰富的低频和高频信息,有效改善了传统功率谱反演大气湍流随机相位屏时低频信息严重不足的缺陷.

English Abstract

参考文献 (12)

目录

    /

    返回文章
    返回