搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

级联式平面抛物面型X射线组合折射透镜的设计与制作

付明磊 乐孜纯 周寒青 张明 全必胜 王华 毛成文 王昌辉 沈小燕

引用本文:
Citation:

级联式平面抛物面型X射线组合折射透镜的设计与制作

付明磊, 乐孜纯, 周寒青, 张明, 全必胜, 王华, 毛成文, 王昌辉, 沈小燕

Design and fabrication of cascaded X-ray planar parabolic compound refractive lens

Fu Ming-Lei, Le Zi-Chun, Zhou Han-Qing, Zhang Ming, Quan Bi-Sheng, Wang Hua, Mao Cheng-Wen, Wang Chang-Hui, Shen Xiao-Yan
PDF
导出引用
  • X射线组合折射透镜(CRL)已逐步成为同步辐射光源下X射线聚焦光学器件的标准配件之一,它具有结构紧凑、易调节校准、适用光子能量范围大等优点. 本文设计了一种级联式平面抛物面型CRL,它将N1个具有较大抛物面几何孔径(R0)的折射单元Ⅰ与N2个具有较小抛物面顶点曲率半径(R)的折射单元Ⅱ级联,以解决常规CRL设计过程中焦斑尺寸与透过率的矛盾. 采用PMMA材料,利用LIGA技术制作了一组级联式平面抛物面型CRL,其中折射单元I的主要结构参数为N1=15,R1=200 μm,2R01=564 μm;折射单元Ⅱ的主要结构参数为N2=20,R2=50 μm,2R02=140 μm. 在上海光源同步辐射线束上,所制作的级联式平面抛物面型CRL实现了对初始光斑尺寸为200 μm×100 μm的入射X射线的一维聚焦,测试得到的焦距为1.052 m,横向焦斑尺寸为24.9 μm@8 keV,透过率为2.19%.
    Due to its attractive features such as compact size, simple to align and wide working range of photon energy, the X-ray compound refractive lens (CRL) has gradually become one of the standard accessories to focus the X-ray beams from the synchrotron radiation light source. In this paper, a cascaded planar parabolic CRL is designed and fabricated. The novel CRL is composed of type Ⅰ and type Ⅱ refractive elements in order to achieve a small spot size while maintaining the transmission. In type I refractive element, the parabolic geometry aperture (R0) is large, while, in type Ⅱ refractive element, the radius of curvature (R) at the parabolic vertex is small. So N1 numbers of type I and N2 numbers of type Ⅱ refractive elements are cascaded to form a single-chip CRL. A cascaded X-ray planar parabolic CRL is constructed using PMMA material by means of LIGA techniques. The main structural parameters of type Ⅰ refractive elements are: N1=15, R1=200 μm, 2R01=564 μm. The main structural parameters of type Ⅱ refractive elements are: N2=20, R2=50 μm, 2R02=140 μm. The cascaded planar parabolic CRL is tested on the beam line whose original incident X-ray spot is 200 μm×100 μm at Shanghai synchrotron radiation facility. The measured lateral focusing spot size is 24.9 μm@8 keV, the transmission rate is 2.19% and the focal length is 1.052 m.
    • 基金项目: 高等学校博士学科点专项科研基金(批准号:20133317110006)、国家国际科技合作项目(批准号:2012DFR10510)和上海光源用户课题(批准号:09sr0134)资助的课题.
    • Funds: Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20133317110006 ), the International Joint Research Program of China(Grant No. 2012DFR10510), and the User Project of Shanghai Synchrotron Radiation Facility, China (Grant No. 09sr0134).
    [1]

    Cao Z R, Dong J J, Yang Z H, Zhan X Y, Yuan Z, Zhang H Y, Jiang S E, Ding Y K 2013 Acta Phys. Sin. 62 045205(in Chinese) [曹柱荣, 董建军, 杨正华, 詹夏宇, 袁铮, 张海鹰, 江少恩, 丁永坤 2013 物理学报 62 045205]

    [2]

    Fox O J L, Alianelli L, Malik A M, Pape I, May P W, Sawhney K J S 2014 Opt. Express 22 7657

    [3]

    Huang Q S, Li H C, Song Z Q, Zhu J T, Wang Z S, Li A G, Yan S, Mao C W, Wang H, Yan F, Zhang L, Yu X H, Liu P, Li M 2013 Chin. Phys. C 37 028002

    [4]

    Li Y D, Lin X Y, Liu S G, He J L, Guo F, Sun T X, Liu P 2013 Chin. Phys. B 22 044103

    [5]

    Guilherme A, Buzanich G, Carvalho M L 2012 Spectrochim. Acta. Part B 77 1

    [6]

    Snigireva I, Snigirev A 2013 Journal of Physics: Conference Series 463 012044

    [7]

    Ogurreck M, Wilde F, Herzen J, Beckmann F, Nazmov V, Mohr J, Haibel A, Mller M, Schreyer A 2013 Journal of Physics: Conference Series 425 182002

    [8]

    Guilherme A, Buzanich G, Radtke M, Reinholz U, Coroado J, Dos Santos J M F, Carvalho M L 2012 J. Anal. At. Spectrom 27 966

    [9]

    Buzanich G, Radtke M, Reinholz U, Riesemeier H, Streli C 2012 J. Anal. At. Spectrom 27 1803

    [10]

    Vaughan G B M, Wright J P, Bytchkov A, Rossat M, Gleyzolle H, Snigireva I, Snigirev A 2011 J. Synchrotron. Radiat 18 125

    [11]

    Zozulya A V, Bondarenko S, Schavkan A, Westermeier F, Grbel G, Sprung M 2012 Opt. Express 20 18967

    [12]

    Andrejczuk A, Nagamine M, Sakurai Y, Itou M 2014 J. Synchrotron. Radiat 21 57

    [13]

    Le Z C, Liang J Q, Dong W, Zhu P P, Peng L Q, Wang W B, Huang W X, Yuan Q X, Wang J Y 2007 Chin. Phys. 16 984

    [14]

    Le Z C, Dong W, Liu W, Zhang M, Liang J Q, Quan B S, Liu K, Liang Z Z, Zhu P P, Yin F T, Huang W X 2010 Acta Phys. Sin. 59 1977(in Chinese) [乐孜纯, 董文, 刘魏, 张明, 梁静秋, 全必胜, 刘恺, 梁中翥, 朱佩平, 伊福廷, 黄万霞 2010 物理学报 59 1977]

    [15]

    Le Z C, Zhang M, Dong W, Quan B S, Liu W, Liu K 2010 Acta Phys. Sin. 59 6284(in Chinese) [乐孜纯, 张明, 董文, 全必胜, 刘魏, 刘恺 2010 物理学报 59 6284]

    [16]

    Yao Q J 1989 Optical tutorial (Second Edition) (Beijing: Higher Education Press) p210 (in Chinese) [姚启钧1989光学教程(第二版) (北京: 高等教育出版社)第210页]

    [17]

    Le Z C, Liang J Q 2003 J. Opt. A: Pure & Appl. Opt. 5 374

  • [1]

    Cao Z R, Dong J J, Yang Z H, Zhan X Y, Yuan Z, Zhang H Y, Jiang S E, Ding Y K 2013 Acta Phys. Sin. 62 045205(in Chinese) [曹柱荣, 董建军, 杨正华, 詹夏宇, 袁铮, 张海鹰, 江少恩, 丁永坤 2013 物理学报 62 045205]

    [2]

    Fox O J L, Alianelli L, Malik A M, Pape I, May P W, Sawhney K J S 2014 Opt. Express 22 7657

    [3]

    Huang Q S, Li H C, Song Z Q, Zhu J T, Wang Z S, Li A G, Yan S, Mao C W, Wang H, Yan F, Zhang L, Yu X H, Liu P, Li M 2013 Chin. Phys. C 37 028002

    [4]

    Li Y D, Lin X Y, Liu S G, He J L, Guo F, Sun T X, Liu P 2013 Chin. Phys. B 22 044103

    [5]

    Guilherme A, Buzanich G, Carvalho M L 2012 Spectrochim. Acta. Part B 77 1

    [6]

    Snigireva I, Snigirev A 2013 Journal of Physics: Conference Series 463 012044

    [7]

    Ogurreck M, Wilde F, Herzen J, Beckmann F, Nazmov V, Mohr J, Haibel A, Mller M, Schreyer A 2013 Journal of Physics: Conference Series 425 182002

    [8]

    Guilherme A, Buzanich G, Radtke M, Reinholz U, Coroado J, Dos Santos J M F, Carvalho M L 2012 J. Anal. At. Spectrom 27 966

    [9]

    Buzanich G, Radtke M, Reinholz U, Riesemeier H, Streli C 2012 J. Anal. At. Spectrom 27 1803

    [10]

    Vaughan G B M, Wright J P, Bytchkov A, Rossat M, Gleyzolle H, Snigireva I, Snigirev A 2011 J. Synchrotron. Radiat 18 125

    [11]

    Zozulya A V, Bondarenko S, Schavkan A, Westermeier F, Grbel G, Sprung M 2012 Opt. Express 20 18967

    [12]

    Andrejczuk A, Nagamine M, Sakurai Y, Itou M 2014 J. Synchrotron. Radiat 21 57

    [13]

    Le Z C, Liang J Q, Dong W, Zhu P P, Peng L Q, Wang W B, Huang W X, Yuan Q X, Wang J Y 2007 Chin. Phys. 16 984

    [14]

    Le Z C, Dong W, Liu W, Zhang M, Liang J Q, Quan B S, Liu K, Liang Z Z, Zhu P P, Yin F T, Huang W X 2010 Acta Phys. Sin. 59 1977(in Chinese) [乐孜纯, 董文, 刘魏, 张明, 梁静秋, 全必胜, 刘恺, 梁中翥, 朱佩平, 伊福廷, 黄万霞 2010 物理学报 59 1977]

    [15]

    Le Z C, Zhang M, Dong W, Quan B S, Liu W, Liu K 2010 Acta Phys. Sin. 59 6284(in Chinese) [乐孜纯, 张明, 董文, 全必胜, 刘魏, 刘恺 2010 物理学报 59 6284]

    [16]

    Yao Q J 1989 Optical tutorial (Second Edition) (Beijing: Higher Education Press) p210 (in Chinese) [姚启钧1989光学教程(第二版) (北京: 高等教育出版社)第210页]

    [17]

    Le Z C, Liang J Q 2003 J. Opt. A: Pure & Appl. Opt. 5 374

  • [1] 袁天语, 邵尚坤, 孙学鹏, 李惠泉, 华陆, 孙天希. 一种用于软X射线激光去相干的单玻璃管光学透镜设计. 物理学报, 2023, 72(3): 034203. doi: 10.7498/aps.72.20221917
    [2] 孙宏祥, 方欣, 葛勇, 任旭东, 袁寿其. 基于蜷曲空间结构的近零折射率声聚焦透镜. 物理学报, 2017, 66(24): 244301. doi: 10.7498/aps.66.244301
    [3] 孟伟东, 孙丽存, 翟影, 杨瑞芬, 普小云. 用液芯柱透镜快速测量液相扩散系数-折射率空间分布瞬态测量法. 物理学报, 2015, 64(11): 114205. doi: 10.7498/aps.64.114205
    [4] 王云, 蓝天, 李湘, 沈振民, 倪国强. 复合抛物面聚光器作为可见光通信光学天线的设计研究与性能分析. 物理学报, 2015, 64(12): 124212. doi: 10.7498/aps.64.124212
    [5] 陈直, 许良, 陈荣昌, 杜国浩, 邓彪, 谢红兰, 肖体乔. Kinoform单透镜的硬X射线聚焦性能. 物理学报, 2015, 64(16): 164104. doi: 10.7498/aps.64.164104
    [6] 朱幸福, 梁斌明, 湛胜高, 陈家璧, 庄松林. 负折射平板透镜景深特性仿真分析. 物理学报, 2014, 63(13): 134202. doi: 10.7498/aps.63.134202
    [7] 肖啸, 张志友, 肖志刚, 许德富, 邓迟. 银层超透镜光学传递函数的研究. 物理学报, 2012, 61(11): 114201. doi: 10.7498/aps.61.114201
    [8] 延凤平, 刘鹏, 谭中伟, 陶沛琳, 李琦, 彭万敬, 冯亭, 谭思宇. 基于组合透镜与渐变折射率光纤改进激光器耦合效率的新方法. 物理学报, 2012, 61(16): 164202. doi: 10.7498/aps.61.164202
    [9] 乐孜纯, 张明, 董文, 全必胜, 刘魏, 刘恺. 制作工艺误差对X射线组合折射透镜聚焦性能影响研究. 物理学报, 2010, 59(9): 6284-6289. doi: 10.7498/aps.59.6284
    [10] 乐孜纯, 董文, 刘魏, 张明, 梁静秋, 全必胜, 刘恺, 梁中翥, 朱佩平, 伊福廷, 黄万霞. 抛物面型X射线组合折射透镜聚焦性能的理论与实验研究. 物理学报, 2010, 59(3): 1977-1984. doi: 10.7498/aps.59.1977
    [11] 朱艳青, 梁静秋, 梁中翥, 黄鑫华, 乐孜纯, 伊福廷, 侯凤杰, 黄万霞, 董文, 王维彪, 王志立, 崔乃迪. 背面曝光技术制作沙漏状X射线组合折射透镜. 物理学报, 2009, 58(3): 1526-1530. doi: 10.7498/aps.58.1526
    [12] 张 波, 王 智. 二维空气孔型光子晶体负折射平板透镜的减反层. 物理学报, 2007, 56(3): 1404-1408. doi: 10.7498/aps.56.1404
    [13] 王 风, 刘德森, 蒋小平, 周素梅. 离子交换引起的GRIN棒透镜大折射率差值分析. 物理学报, 2007, 56(10): 5890-5894. doi: 10.7498/aps.56.5890
    [14] 陈潇潇, 李斌成, 杨亚培. 光学薄膜测量时平顶光束激励的表面热透镜理论模型. 物理学报, 2006, 55(9): 4673-4678. doi: 10.7498/aps.55.4673
    [15] 蒋树声;李齐;徐秀英. 天然绿柱石晶体中生长区界面的X射线形貌和光学双折射形貌研究. 物理学报, 1989, 38(8): 1253-1258. doi: 10.7498/aps.38.1253
    [16] 董碧珍, 顾本源. 利用双全息透镜实现光学普遍变换. 物理学报, 1986, 35(3): 413-418. doi: 10.7498/aps.35.413
    [17] 董碧珍, 顾本源. 实现光学变换的单个全息透镜的有效设计. 物理学报, 1986, 35(2): 235-242. doi: 10.7498/aps.35.235
    [18] 杨国桢. 利用单个全息透镜实现光学变换的理论. 物理学报, 1981, 30(10): 1340-1350. doi: 10.7498/aps.30.1340
    [19] 西门纪业. 磁透镜与偏转器的复合系统的电子光学性质和象差理论. 物理学报, 1977, 26(1): 34-53. doi: 10.7498/aps.26.34
    [20] 黄兰友. 电磁电子透镜光学参量的计算公式. 物理学报, 1977, 26(3): 250-258. doi: 10.7498/aps.26.250
计量
  • 文章访问数:  4849
  • PDF下载量:  458
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-02
  • 修回日期:  2014-04-24
  • 刊出日期:  2014-10-05

/

返回文章
返回