搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

线照明并行谱域光学相干层析成像系统与缺陷检测应用研究

赵晨 陈志彦 丁志华 李鹏 沈毅 倪秧

引用本文:
Citation:

线照明并行谱域光学相干层析成像系统与缺陷检测应用研究

赵晨, 陈志彦, 丁志华, 李鹏, 沈毅, 倪秧

Line-field parallel spectral domain optical coherence tomography and its application in defect inspection

Zhao Chen, Chen Zhi-Yan, Ding Zhi-Hua, Li Peng, Shen Yi, Ni Yang
PDF
导出引用
  • 针对玻璃缺陷在线无损检测的迫切需求,本文报道了一种基于线照明并行谱域光学相干层析成像系统的大视场检测系统. 该系统采用快速面阵CMOS相机,单次拍摄即可获取完整的横截面(B-scan)图像. 基于线照明面阵探测器的并行谱域光学相干层析成像系统,可以同时获取沿线照明方向各位置处的深度分辨信息,避免了横向扫描机构的应用. 研制系统的轴向分辨率为17.9 μm,并行方向上的横向分辨率55.7 μm,扫描方向上的横向分辨率为24.8 μm,轴向扫描速率为128 000 A-scan/s,横向视场为32 mm,空气中成像深度大于6 mm,成像灵敏度达到62 dB以上. 利用研制的线照明并行谱域光学相干层析成像系统,开展了不同类型玻璃表面及其内部缺陷的检测应用研究.
    For the needs of online nondestructive testing method in glass industry, we have presented a large-range line-field parallel spectral domain optical coherence tomography system. Based on fast area scan CMOS camera, the whole cross-sectional image can be acquired by a single shot. Depth-resolved image at different lateral positions can be acquired simultaneously, without the lateral scanning mechanism. The axial resolution is 17.9 μm, the lateral resolutions in parallel direction and scanning direction are 55.7 μm and 24.8 μm, respectively. The system measurement range is 32 mm in lateral direction and 6 mm in axial direction. At 1 mm axial position, the system sensitivity can reach 62 dB at a rate of 128 000 A-scan/s. By using the present system, application in glass defect inspection has been investigated.
    • 基金项目: 国家自然科学基金(批准号:61335003,61275196,61327007)和中央高校基本科研业务费专项资金(批准号:2014QNA5017)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61335003, 61275196, 61327007), and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 2014QNA5017).
    [1]

    Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A, Fujimoto J G 1991 Science 254 1178

    [2]

    Wojtkowski M, Bajraszewski T, Targowski P, Kowalczyk A 2003 Opt. Lett. 28 1745

    [3]

    Wojtkowski M, Srinivasan V, Ko T, Fujimoto J, Kowalczyk A, Duker J 2004 Opt. Express 12 2404

    [4]

    De Boer J F, Cense B, Park B H, Pierce M C, Tearney G J, Bouma B E 2003 Opt. Lett. 28 2067

    [5]

    Wojtkowski M 2010 Appl. Opt. 49 30

    [6]

    Bao W, Ding Z H, Wang C, Mei S T 2013 Acta Phys. Sin. 62 114202(in Chinese) [鲍文, 丁志华, 王川, 梅胜涛 2013 物理学报 62 114202]

    [7]

    Yang Z Y, Ding Z H, Wang L, Shen Y 2013 Acta Phys. Sin. 62 164204(in Chinese) [颜扬治, 丁志华, 王玲, 沈毅 2013 物理学报 62 164204]

    [8]

    Jia Y Q, Liang Y M, Zhu X N 2007 Acta Phys. Sin. 56 3861

    [9]

    Stifter D 2007 Appl. Phys. B 88 337

    [10]

    Nemeth A, Hannesschläger G, Leiss-Holzinger E, Wiesauer K, Leitner M 2013

    [11]

    Zuluaga A F, Richards-Kortum R 1999 Opt. Lett. 24 519

    [12]

    Grajciar B, Pircher M, Fercher A, Leitgeb R 2005 Opt. Express 13 1131

    [13]

    Endo T, Yasuno Y, Makita S, Itoh M, Yatagai T 2005 Opt. Express 13 695

    [14]

    [14 Yasuno Y, Endo T, Makita S, Aoki G, Itoh M, Yatagai T 2006 J. Biomed. Opt. 11 014014

    [15]

    Nakamura Y, Makita S, Yamanari M, Itoh M, Yatagai T, Yasuno Y 2007 Opt. Express 15 7103

    [16]

    Luo Y, Arauz L J, Castillo J E, Barton J K, Kostuk R K 2007 Appl. Opt. 46 8291

    [17]

    Kumar M, Islam M N, Terry F L, Aleksoff C C, Davidson D 2010 Opt. Express 18 22471

    [18]

    Yaqoob Z, Choi W, Oh S, Lue N, Park Y, Fang-Yen C, Feld M S 2009 Opt. Express 17 10681

    [19]

    Grajciar B, Lehareinger Y, Fercher A F, Leitgeb R A 2010 Opt. Express 18 21841

    [20]

    Drexler W, Fujimoto J G 2008 Optical coherence tomography: technology and applications (Berlin: Springer) pp47-72

    [21]

    Zhang K, Kang J U 2010 Opt. Express 18 11772

    [22]

    Yao Z X, Zhong J W, Mao B N, Pan B L 2008 Chin. Phys. B 17 578

    [23]

    Wang C, Tang Z, Fang C, Yu Y J, Mao Y X, Qi B 2011 Chin. Phys. B 20 114218

    [24]

    Dhalla A H, Migacz J V, Izatt J A 2010 Opt. Lett. 35 2305

    [25]

    Graf R N, Brown W J, Wax A 2008 Opt. Lett. 33 1285

  • [1]

    Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A, Fujimoto J G 1991 Science 254 1178

    [2]

    Wojtkowski M, Bajraszewski T, Targowski P, Kowalczyk A 2003 Opt. Lett. 28 1745

    [3]

    Wojtkowski M, Srinivasan V, Ko T, Fujimoto J, Kowalczyk A, Duker J 2004 Opt. Express 12 2404

    [4]

    De Boer J F, Cense B, Park B H, Pierce M C, Tearney G J, Bouma B E 2003 Opt. Lett. 28 2067

    [5]

    Wojtkowski M 2010 Appl. Opt. 49 30

    [6]

    Bao W, Ding Z H, Wang C, Mei S T 2013 Acta Phys. Sin. 62 114202(in Chinese) [鲍文, 丁志华, 王川, 梅胜涛 2013 物理学报 62 114202]

    [7]

    Yang Z Y, Ding Z H, Wang L, Shen Y 2013 Acta Phys. Sin. 62 164204(in Chinese) [颜扬治, 丁志华, 王玲, 沈毅 2013 物理学报 62 164204]

    [8]

    Jia Y Q, Liang Y M, Zhu X N 2007 Acta Phys. Sin. 56 3861

    [9]

    Stifter D 2007 Appl. Phys. B 88 337

    [10]

    Nemeth A, Hannesschläger G, Leiss-Holzinger E, Wiesauer K, Leitner M 2013

    [11]

    Zuluaga A F, Richards-Kortum R 1999 Opt. Lett. 24 519

    [12]

    Grajciar B, Pircher M, Fercher A, Leitgeb R 2005 Opt. Express 13 1131

    [13]

    Endo T, Yasuno Y, Makita S, Itoh M, Yatagai T 2005 Opt. Express 13 695

    [14]

    [14 Yasuno Y, Endo T, Makita S, Aoki G, Itoh M, Yatagai T 2006 J. Biomed. Opt. 11 014014

    [15]

    Nakamura Y, Makita S, Yamanari M, Itoh M, Yatagai T, Yasuno Y 2007 Opt. Express 15 7103

    [16]

    Luo Y, Arauz L J, Castillo J E, Barton J K, Kostuk R K 2007 Appl. Opt. 46 8291

    [17]

    Kumar M, Islam M N, Terry F L, Aleksoff C C, Davidson D 2010 Opt. Express 18 22471

    [18]

    Yaqoob Z, Choi W, Oh S, Lue N, Park Y, Fang-Yen C, Feld M S 2009 Opt. Express 17 10681

    [19]

    Grajciar B, Lehareinger Y, Fercher A F, Leitgeb R A 2010 Opt. Express 18 21841

    [20]

    Drexler W, Fujimoto J G 2008 Optical coherence tomography: technology and applications (Berlin: Springer) pp47-72

    [21]

    Zhang K, Kang J U 2010 Opt. Express 18 11772

    [22]

    Yao Z X, Zhong J W, Mao B N, Pan B L 2008 Chin. Phys. B 17 578

    [23]

    Wang C, Tang Z, Fang C, Yu Y J, Mao Y X, Qi B 2011 Chin. Phys. B 20 114218

    [24]

    Dhalla A H, Migacz J V, Izatt J A 2010 Opt. Lett. 35 2305

    [25]

    Graf R N, Brown W J, Wax A 2008 Opt. Lett. 33 1285

  • [1] 陈纪辉, 王峰, 理玉龙, 张兴, 姚科, 关赞洋, 刘祥明. 针对微尺寸X射线源的非相干全息层析成像. 物理学报, 2023, 72(19): 195203. doi: 10.7498/aps.72.20230920
    [2] 赵荣, 周宾, 刘奇, 戴明露, 汪步斌, 王一红. 基于激光吸收光谱技术的在线层析成像算法. 物理学报, 2023, 72(5): 054206. doi: 10.7498/aps.72.20221935
    [3] 钱黄河, 王迪, 韩涛, 丁志华. 基于复数主从光学相干层析成像相位信息的离散界面快速定位方法. 物理学报, 2022, 71(21): 214202. doi: 10.7498/aps.71.20220444
    [4] 邢阳光, 彭吉龙, 段紫雯, 闫雷, 李林, 刘越. 太阳极紫外He II 30.4 nm谱线层析成像及其光谱数据反演. 物理学报, 2022, 71(15): 159501. doi: 10.7498/aps.71.20220084
    [5] 吴彤, 霍文麒, 黄蕴智, 王吉明, 顾晓蓉, 路元刚, 赫崇君, 刘友文. 用于内窥光学相干层析成像的小型化预标定Lissajous扫描光纤探头. 物理学报, 2021, 70(15): 150701. doi: 10.7498/aps.70.20210151
    [6] 葛银娟, 潘兴臣, 刘诚, 朱健强. 基于相干调制成像的光学检测技术. 物理学报, 2020, 69(17): 174202. doi: 10.7498/aps.69.20200224
    [7] 吴彤, 孙帅帅, 王绪晖, 王吉明, 赫崇君, 顾晓蓉, 刘友文. 基于最优化线性波数光谱仪的谱域光学相干层析成像系统. 物理学报, 2018, 67(10): 104208. doi: 10.7498/aps.67.20172606
    [8] 胡喆皓, 上官紫微, 邱建榕, 杨珊珊, 鲍文, 沈毅, 李鹏, 丁志华. 基于受激辐射信号的谱域光学相干层析分子成像方法. 物理学报, 2018, 67(17): 174201. doi: 10.7498/aps.67.20171738
    [9] 樊金宇, 高峰, 孔文, 黎海文, 史国华. 多面转镜激光器扫频光学相干层析成像系统的全光谱重采样方法. 物理学报, 2017, 66(11): 114204. doi: 10.7498/aps.66.114204
    [10] 马振鹤, 窦世丹, 马毓姝, 刘健, 赵玉倩, 刘江红, 吕江涛, 王毅. 基于光学相干层析成像的早期鸡胚心脏径向应变测量. 物理学报, 2016, 65(23): 235202. doi: 10.7498/aps.65.235202
    [11] 上官紫微, 沈毅, 李鹏, 丁志华. 扫频光学相干层析成像系统的波数校正与相位测量研究. 物理学报, 2016, 65(3): 034201. doi: 10.7498/aps.65.034201
    [12] 潘聪, 郭立, 沈毅, 严雪过, 丁志华, 李鹏. 基于界面信号的扫频光学相干层析成像系统相位矫正方法. 物理学报, 2016, 65(1): 014201. doi: 10.7498/aps.65.014201
    [13] 严雪过, 沈毅, 潘聪, 李鹏, 丁志华. 基于拉锥结构的全光纤型内窥OCT探针研究. 物理学报, 2016, 65(2): 024201. doi: 10.7498/aps.65.024201
    [14] 唐弢, 赵晨, 陈志彦, 李鹏, 丁志华. 超高分辨光学相干层析成像技术与材料检测应用. 物理学报, 2015, 64(17): 174201. doi: 10.7498/aps.64.174201
    [15] 黄良敏, 丁志华, 洪威, 王川. 相关多普勒光学层析成像. 物理学报, 2012, 61(2): 023401. doi: 10.7498/aps.61.023401
    [16] 商在明, 丁志华, 王玲, 刘勇. 基于光程编码与相干合成的三维超分辨术. 物理学报, 2011, 60(12): 124204. doi: 10.7498/aps.60.124204
    [17] 杨亚良, 丁志华, 王凯, 吴凌, 吴兰. 全场光学相干层析成像系统的研制. 物理学报, 2009, 58(3): 1773-1778. doi: 10.7498/aps.58.1773
    [18] 林浩铭, 邵永红, 屈军乐, 尹 君, 陈思平, 牛憨笨. 散斑照明宽场荧光层析显微成像技术研究. 物理学报, 2008, 57(12): 7641-7649. doi: 10.7498/aps.57.7641
    [19] 陈建文, 高鸿奕, 朱化凤, 谢红兰, 李儒新, 徐至展. 中子相衬层析成像方法. 物理学报, 2005, 54(3): 1132-1135. doi: 10.7498/aps.54.1132
    [20] 向际鹰, 吴 震, 曾绍群, 骆清铭, 张 平, 黄德修. 弱相干扫描层析成像系统的三维传递函数分析. 物理学报, 1999, 48(10): 1831-1838. doi: 10.7498/aps.48.1831
计量
  • 文章访问数:  5068
  • PDF下载量:  1074
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-11
  • 修回日期:  2014-06-04
  • 刊出日期:  2014-10-05

/

返回文章
返回