搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于一维金属光子晶体平凹镜的柱矢量光束亚波长聚焦

仲义 许吉 陆云清 王敏娟 王瑾

引用本文:
Citation:

基于一维金属光子晶体平凹镜的柱矢量光束亚波长聚焦

仲义, 许吉, 陆云清, 王敏娟, 王瑾

Subwavelength focusing of cylindrical vector beams by plano-concave lens based on one dimensional metallic photonic crystal

Zhong Yi, Xu Ji, Lu Yun-Qing, Wang Min-Juan, Wang Jin
PDF
导出引用
  • 柱矢量光束具有柱对称性的偏振分布, 其独特的光场分布和聚焦特性被广泛应用于光学微操纵及光学成像等领域, 并迅速向亚波长尺度拓展. 通常, 亚波长尺度聚焦采用等离激元透镜实现, 但存在光场调控的偏振态局限性. 而借助光子晶体的负折射效应, 不仅能够实现亚波长聚焦或成像, 而且应对正交偏振态同时有效. 采用对电磁波具有更强调控能力的一维金属光子晶体结构, 计算得到的能带结构和等频曲线表明其负折射效应在特定波段对正交偏振态同时有效. 在此基础上设计出一维金属光子晶体柱对称平凹镜结构, 通过有限元算法模拟显示了可见光波段的径向和旋向偏振光的同时亚波长聚焦行为. 进一步的结果表明, 改变柱矢量光束的偏振组分能够直接有效地调节焦场空间分布及偏振分布特性. 所提出的平凹镜结构能够实现对任意偏振组分的柱矢量光束的亚波长尺度聚焦, 且该结构的设计对于各波段情况均有参考意义. 该研究结果对小尺度粒子的光学微操纵、超分辨率成像等相关领域具有潜在的应用价值.
    Cylindrical vector beams (CVB) can exhibit a unique optical field distribution and focusing characteristic, due to the cylindrical symmetry in polarization. They are widely used in optical micro-manipulation, super-resolution imaging etc. and can be extended to subwavelength scale applications rapidly. Usually, the focusing CVB in subwavelength dimensions is realized by using plasmonic lens. However, this method is restricted by the state of polarization of electromagnetic waves. Nevertheless, when the negative refraction effect of photonic crystals is utilized, subwavelength focusing or imaging can be achieved in orthogonal states of polarization simultaneously. In this paper, the one-dimensional metallic photonic crystal (1D-MPC) with stronger manipulation ability is discussed. The calculated band structure and equi-frequency surfaces show negative refraction for both orthogonal states of polarization in a specific wavelength band. A cylindrical 1D-MPC plano-concave lens is designed to simultaneously focus radially and azimuthally polarized beams to subwavelength dimensions in visible spectrum. This phenomenon is simulated using the finite element method. Furthermore, variation of the polarization components in CVB can directly modulate the spacial intensity and the polarization distribution in the focal field. In fact, subwavelength focusing of CVB with arbitrary polarization components can be achieved by using the 1D-MPC plano-concave lens. The scheme proposed in this paper can be taken as reference for other wavelength bands as well. This study is also valuable for optical micro-manipulation of small particle, super-resolution imaging, and other related areas.
    • 基金项目: 南京邮电大学基金(批准号:NY213028,NY213148)和江苏省基础研究计划基金(批准号:BK20131383)资助的课题.
    • Funds: Project supported by the Nanjing University of Posts and Telecommunications Foundation, China (Grant Nos. NY213028, NY213148) and the Jiangsu Provincial Research Foundation for Basic Research, China (Grant No. BK20131383).
    [1]

    Zhan Q 2009 Adv. Opt. Photon. 1 1

    [2]

    Prabakaran K, Chandrasekaran R, Mahadevan G, Jaroszewicz Z, Rajesh K B, Pillai T V S 2013 Opt. Commun. 295 230

    [3]

    Zhao W Q, Tang F, Qiu L R, Liu D L 2013 Acta Phys. Sin. 62 054201 (in Chinese) [赵维谦, 唐芳, 邱丽荣, 刘大礼 2013 物理学报 62 054201]

    [4]

    Zhan Q, Leger J 2002 Opt. Express 10 324

    [5]

    Wróbel P, Pniewski J, Antosiewicz T J, Szoplik T 2009 Phys. Rev. Lett. 102 183902

    [6]

    Ko H, Kim H C, Cheng M 2010 Appl. Opt. 49 950

    [7]

    Shi H, Guo L J 2010 Appl. Phys. Lett. 96 141107

    [8]

    Yu Y, Zappe H 2011 Opt. Express 19 9434

    [9]

    Gjonaj B, Aulbach J, Johnson P M, Mosk A P, Kuiperrs L, Lagendijk A 2013 Phys. Rev. Lett. 110 266804

    [10]

    Veselago V G 1964 Usp. Fiz. Nauk 92 517

    [11]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [12]

    Schurig D, Smith D R 2004 Phys. Rev. E 70 065601

    [13]

    Chen J, Radu C, Puri A 2006 Appl. Phys. Lett. 88 071119

    [14]

    Smith D R, Kroll N 2000 Phys. Rev. Lett. 85 2933

    [15]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [16]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [17]

    Yablonovitch E, Gmitter T J 1989 Phys. Rev. Lett. 63 1950

    [18]

    Vodo P, Lu W T, Huang Y, Sridhar S 2006 Appl. Phys. Lett. 89 084104

    [19]

    Vodo P, Parimi P V, Lu W T, Sridhar S 2005 Appl. Phys. Lett. 86 201108

    [20]

    Cubukcu E, Aydin K, Ozbay E, Foteinopoulou S, Soukoulis C M 2003 Phys. Rev. Lett. 91 207401

    [21]

    Joannopoulos J D, Johnson S G, Winn J N, Meade R D 2011 Photonic Crystals: Molding the Flow of Light (New Jersey: Princeton University Press) p55

    [22]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370

    [23]

    Drachev V P, Chettiar U K, Kildishev A V, Yuan H K, Cai W S, Shalaev V M 2008 Opt. Express 16 1186

    [24]

    Chen W Q, Mark D T, Satoshi I, Alexander V K, Vladimir M S 2010 Opt. Express 18 5124

    [25]

    Palik E D 1998 Handbook of Optical Constants of Solids (Vol. 3) (San Diego: Academic Press) p356

    [26]

    Pu J X, Wang T, Lin H C, Li C L 2010 Chin. Phys. B 19 089201

    [27]

    Chen J N, Xu Q F, Wang G 2011 Chin. Phys. B 20 114211

    [28]

    Yi X N, Li Y, Liu Y C, Ling X H, Zhang Z Y, Luo H L 2014 Acta Phys. Sin. 63 094203 (in Chinese) [易煦农, 李瑛, 刘亚超, 凌晓辉, 张志友, 罗海陆 2014 物理学报 63 094203]

  • [1]

    Zhan Q 2009 Adv. Opt. Photon. 1 1

    [2]

    Prabakaran K, Chandrasekaran R, Mahadevan G, Jaroszewicz Z, Rajesh K B, Pillai T V S 2013 Opt. Commun. 295 230

    [3]

    Zhao W Q, Tang F, Qiu L R, Liu D L 2013 Acta Phys. Sin. 62 054201 (in Chinese) [赵维谦, 唐芳, 邱丽荣, 刘大礼 2013 物理学报 62 054201]

    [4]

    Zhan Q, Leger J 2002 Opt. Express 10 324

    [5]

    Wróbel P, Pniewski J, Antosiewicz T J, Szoplik T 2009 Phys. Rev. Lett. 102 183902

    [6]

    Ko H, Kim H C, Cheng M 2010 Appl. Opt. 49 950

    [7]

    Shi H, Guo L J 2010 Appl. Phys. Lett. 96 141107

    [8]

    Yu Y, Zappe H 2011 Opt. Express 19 9434

    [9]

    Gjonaj B, Aulbach J, Johnson P M, Mosk A P, Kuiperrs L, Lagendijk A 2013 Phys. Rev. Lett. 110 266804

    [10]

    Veselago V G 1964 Usp. Fiz. Nauk 92 517

    [11]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [12]

    Schurig D, Smith D R 2004 Phys. Rev. E 70 065601

    [13]

    Chen J, Radu C, Puri A 2006 Appl. Phys. Lett. 88 071119

    [14]

    Smith D R, Kroll N 2000 Phys. Rev. Lett. 85 2933

    [15]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [16]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [17]

    Yablonovitch E, Gmitter T J 1989 Phys. Rev. Lett. 63 1950

    [18]

    Vodo P, Lu W T, Huang Y, Sridhar S 2006 Appl. Phys. Lett. 89 084104

    [19]

    Vodo P, Parimi P V, Lu W T, Sridhar S 2005 Appl. Phys. Lett. 86 201108

    [20]

    Cubukcu E, Aydin K, Ozbay E, Foteinopoulou S, Soukoulis C M 2003 Phys. Rev. Lett. 91 207401

    [21]

    Joannopoulos J D, Johnson S G, Winn J N, Meade R D 2011 Photonic Crystals: Molding the Flow of Light (New Jersey: Princeton University Press) p55

    [22]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370

    [23]

    Drachev V P, Chettiar U K, Kildishev A V, Yuan H K, Cai W S, Shalaev V M 2008 Opt. Express 16 1186

    [24]

    Chen W Q, Mark D T, Satoshi I, Alexander V K, Vladimir M S 2010 Opt. Express 18 5124

    [25]

    Palik E D 1998 Handbook of Optical Constants of Solids (Vol. 3) (San Diego: Academic Press) p356

    [26]

    Pu J X, Wang T, Lin H C, Li C L 2010 Chin. Phys. B 19 089201

    [27]

    Chen J N, Xu Q F, Wang G 2011 Chin. Phys. B 20 114211

    [28]

    Yi X N, Li Y, Liu Y C, Ling X H, Zhang Z Y, Luo H L 2014 Acta Phys. Sin. 63 094203 (in Chinese) [易煦农, 李瑛, 刘亚超, 凌晓辉, 张志友, 罗海陆 2014 物理学报 63 094203]

  • [1] 吴婉玲, 王向珂, 虞华康, 李志远. 基于微纳光纤双模式干涉的亚波长聚焦光场及光捕获应用. 物理学报, 2024, 73(10): 100401. doi: 10.7498/aps.73.20240181
    [2] 李鑫, 吴立祥, 杨元杰. 矩形纳米狭缝超表面结构的近场增强聚焦调控. 物理学报, 2019, 68(18): 187103. doi: 10.7498/aps.68.20190728
    [3] 饶冰洁, 刘圣, 赵建林. 蜂巢光子晶格中光波的无衍射和反常折射. 物理学报, 2017, 66(23): 234207. doi: 10.7498/aps.66.234207
    [4] 胡昌宝, 许吉, 丁剑平. 介质填充型二次柱面等离激元透镜的亚波长聚焦. 物理学报, 2016, 65(13): 137301. doi: 10.7498/aps.65.137301
    [5] 罗朝明, 陈世祯, 凌晓辉, 张进, 罗海陆. 高阶邦加球上柱矢量光束的变换. 物理学报, 2014, 63(15): 154203. doi: 10.7498/aps.63.154203
    [6] 易煦农, 李瑛, 刘亚超, 凌晓辉, 张志友, 罗海陆. 基于Metasurface的柱矢量光束的产生. 物理学报, 2014, 63(9): 094203. doi: 10.7498/aps.63.094203
    [7] 赵浩, 沈义峰, 张中杰. 光子晶体中基于有效折射率接近零的光束准直出射. 物理学报, 2014, 63(17): 174204. doi: 10.7498/aps.63.174204
    [8] 湛胜高, 梁斌明, 朱幸福, 陈家壁, 庄松林. 基于空气孔的光子晶体亚波长成像的特性研究. 物理学报, 2014, 63(15): 154212. doi: 10.7498/aps.63.154212
    [9] 于国君, 卜胜利, 王响, 纪红柱. 基于硅柱-磁性液体体系的光子晶体的可调谐负折射特性研究. 物理学报, 2012, 61(19): 194703. doi: 10.7498/aps.61.194703
    [10] 孔延梅, 高超群, 景玉鹏, 陈大鹏. 基于光子晶体分光的气敏传感器研究. 物理学报, 2011, 60(5): 054215. doi: 10.7498/aps.60.054215
    [11] 童元伟, 田双, 庄松林. 等效折射率为非-1时的亚波长成像. 物理学报, 2011, 60(5): 054201. doi: 10.7498/aps.60.054201
    [12] 李晓春, 高俊丽, 刘绍娥, 周科朝, 黄伯云. 无序对二维声子晶体平板负折射成像的影响. 物理学报, 2010, 59(1): 376-380. doi: 10.7498/aps.59.376
    [13] 童元伟, 毛宇, 庄松林. 光频段多频率域负折射率材料的数值研究. 物理学报, 2010, 59(8): 5553-5558. doi: 10.7498/aps.59.5553
    [14] 孔令凯, 郑志强, 冯卓宏, 李小燕, 姜翠华, 明海. 二维空气环型光子晶体的负折射成像特性. 物理学报, 2009, 58(11): 7702-7707. doi: 10.7498/aps.58.7702
    [15] 李国俊, 康学亮, 李永平. 二维蜂窝格子光子晶体的远场成像特性及界面对成像质量的影响. 物理学报, 2007, 56(11): 6403-6407. doi: 10.7498/aps.56.6403
    [16] 张 波, 王 智. 二维空气孔型光子晶体负折射平板透镜的减反层. 物理学报, 2007, 56(3): 1404-1408. doi: 10.7498/aps.56.1404
    [17] 许静平, 王立刚, 羊亚平. 利用含负折射率材料的光子晶体实现角度滤波器. 物理学报, 2006, 55(6): 2765-2770. doi: 10.7498/aps.55.2765
    [18] 董海霞, 江海涛, 杨成全, 石云龙. 含双负缺陷的一维光子晶体耦合腔的杂质带特性. 物理学报, 2006, 55(6): 2777-2780. doi: 10.7498/aps.55.2777
    [19] 厉以宇, 顾培夫, 李明宇, 张锦龙, 刘 旭. 波状结构二维光子晶体的自准直特性及亚波长成像的研究. 物理学报, 2006, 55(5): 2596-2600. doi: 10.7498/aps.55.2596
    [20] 项元江, 文双春, 唐康凇. 含单负介质层受阻全内反射结构的光子隧穿现象研究. 物理学报, 2006, 55(6): 2714-2719. doi: 10.7498/aps.55.2714
计量
  • 文章访问数:  5685
  • PDF下载量:  546
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-02
  • 修回日期:  2014-08-10
  • 刊出日期:  2014-12-05

/

返回文章
返回