搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑模型不确定性和时延的静止无功补偿器自适应滑膜控制器设计

王曦 王渝红 李兴源 苗淼

引用本文:
Citation:

考虑模型不确定性和时延的静止无功补偿器自适应滑膜控制器设计

王曦, 王渝红, 李兴源, 苗淼

Design of the static var compensator adaptive sliding mode controller considering model uncertainty and time-delay

Wang Xi, Wang Yu-Hong, Li Xing-Yuan, Miao Miao
PDF
导出引用
  • 静止无功补偿器(static var compensator, SVC)不仅可以为电力系统提供无功支撑、稳定电压, 其附加控制还可以有效提高系统暂态稳定性, 但SVC模型参数的不确定性以及广域测量信号时延等外部干扰给附加控制器的设计带来很大的难度. 提出了一种基于自适应滑模变结构理论的SVC鲁棒控制器设计方法, 所设计控制器能有效提高系统暂态稳定性, 并且其对于模型不确定性以及时延有较好的鲁棒性. 首先根据区域惯量中心的运动方程建立了包含SVC的电力系统模型; 然后将滑模变结构理论应用于电力系统模型中, 求得SVC附加控制律, 并通过自适应律优化控制器参数; 最后通过四机两区域系统以及IEEE9节点系统对SVC控制器效果进行了仿真验证. 结果表明, SVC自适应滑模控制器可以有效提升系统暂态稳定性, 并且其性能优于传统的线性控制方法.
    Using supplementary controller of static var compensator (SVC) is an effective way for enhancing the transient stability of an interconnected power system. In conventional controller design, SVC is usually considered as a first-order inertial model with known parameters. In this paper, a nonlinear controller design method based on adaptive sliding mode control is proposed to design a SVC supplementary controller. The imprecise of the model and the external disturbances such as time-delay are taking into consideration in the SVC model, and the interconnected system with SVC is considered by the center of inertia model. Then the SVC supplementary controller is designed based on the adaptive sliding control theory to improve the transient stability of the power system. Finally, the effectiveness of the proposed controller is verified using two simple systems. Simulation results show that the designed SVC sliding mode controller is robust to the variation of operation conditions and time-delays, and it has a better performance in enhancing the system stability as compared with the conventional SVC controller.
    • 基金项目: 国家自然科学基金重点项目(批准号:51037003)、国家电网公司大电网规划与运行控制技术重大专项(批准号:SGCC-MPLG027-2012)和国家电网公司科技项目(批准号:522830140003)资助的课题.
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 51037003), the State Grid Corporation of China, the Major Projects on Planning and Operation Control of Large Scale Grid (Grant No. SGCC-MPLG027-2012), and the Technical Project of State Grid Corporation of China (Grant No. 522830140003).
    [1]

    Wang Z H, Shen F, Wu T Z 2000 Auto. Elect. Power Syst. 24 1 (in Chinese) [王仲鸿, 沈斐, 吴铁铮2000电力系统自动化 24 1]

    [2]

    Zhang X P, Rehtanz C, Pal B 2006 Flexible AC Transmission Systems: Modeling and Control (Berlin: Springer Verlag) pp2-7

    [3]

    Li S P, Liu G Y 2006 Static Reactive Power Compensation Technology (Beijing: China Electric Power Press) pp22-30 (in Chinese) [粟时平, 刘桂英2006静止无功功率补偿技术(北京: 中国电力出版社)第22–30页]

    [4]

    Jiang Q Y, Zhang P X, Cao Y J 2006 Proc. CSEE 26 82 (in Chinese) [江全元, 张鹏翔, 曹一家 2006 中国电机工程学报 26 82]

    [5]

    Liu J, Li X Y, Tang G F 2008 Proc. CSEE 28 12 (in Chinese) [刘隽, 李兴源, 汤广福2008中国电机工程学报 28 12]

    [6]

    Chang Y, Xu Z 2006 Trans. China Electrotech. Soc. 21 40 (in Chinese) [常勇, 徐政2006电工技术学报 21 40]

    [7]

    Ma Y J, Zhou X S 2003 Proce. CSEE 23 84 (in Chinese) [马幼捷, 周雪松2003中国电机工程学报23 84]

    [8]

    Wang Y, Chen H, Zhou R 2000 Int. J. Electr. Power Energy Sys. 22 463

    [9]

    Fu J, Zhao J, Dimirovsk G M 2006 Proc. CSEE 26 7 (in Chinese) [付俊, 赵军, 乔治·迪米罗夫斯基 2006 中国电机工程学报 26 7]

    [10]

    Hingorani N G, Gyugyi L 2000 Understanding FACTS-Concept and Technology of Flexible AC Transmission Systems (Piscataway: IEEE Press) pp68-69

    [11]

    Tan X, Tong L, Yin Z 1998 International Conference on Power System Technology Beijing, China, 1998 p672

    [12]

    Itkis U 1976 Control Systems of Variable Structure (New York: Wiley) pp32-40

    [13]

    Huang L L, Qi X 2013 Acta Phys. Sin. 62 080507 (in Chinese) [黄丽莲, 齐雪2013 物理学报 62 080507]

    [14]

    Qi D L, Wang Q, Yang J 2011 Chin. Phys. B 20 100505

    [15]

    Kong C C, Chen S H 2009 Chin. Phys. B 18 91

    [16]

    Lou X Y, Cui B T 2008 Chin. Phys. B 17 4434

    [17]

    Hung J Y, Gao W, Hung J C 1993 IEEE Trans. Ind. Electron. 40 2

    [18]

    Ni Y X, Chen S S, Zhang B L 2002 Dynamic Power System Theory and Analysis (Beijing: Tsinghua University Press) pp188-190 (in Chinese) [倪以信, 陈寿孙, 张宝霖2002动态电力系统的理论和分析(北京: 清华大学出版社)第188–190页]

    [19]

    Farsangi M M, Hossein N, Song Y H 2007 IEEE Trans. Power Syst. 22 1061

    [20]

    Liu X L, Wang X 2007 J. Zhengzhou Univ. (Eng. Sci.) 28 87 (in Chinese) [刘宪林, 王鑫 2007 郑州大学学报(工学版) 28 87]

    [21]

    Anderson P M, Fouad A A 1977 Power System Control and Stability (Ames: the Iowa State University Press) pp152-158

    [22]

    Xue A C, Shen C, Mei S W 2006 Auto. Electr. Power Syst. 30 1 (in Chinese) [薛安成, 沈沉, 梅生伟 2006 电力系统自动化 30 1]

    [23]

    Pan X P 2008 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese) [潘学萍2008博士学位论文(杭州: 浙江大学)]

  • [1]

    Wang Z H, Shen F, Wu T Z 2000 Auto. Elect. Power Syst. 24 1 (in Chinese) [王仲鸿, 沈斐, 吴铁铮2000电力系统自动化 24 1]

    [2]

    Zhang X P, Rehtanz C, Pal B 2006 Flexible AC Transmission Systems: Modeling and Control (Berlin: Springer Verlag) pp2-7

    [3]

    Li S P, Liu G Y 2006 Static Reactive Power Compensation Technology (Beijing: China Electric Power Press) pp22-30 (in Chinese) [粟时平, 刘桂英2006静止无功功率补偿技术(北京: 中国电力出版社)第22–30页]

    [4]

    Jiang Q Y, Zhang P X, Cao Y J 2006 Proc. CSEE 26 82 (in Chinese) [江全元, 张鹏翔, 曹一家 2006 中国电机工程学报 26 82]

    [5]

    Liu J, Li X Y, Tang G F 2008 Proc. CSEE 28 12 (in Chinese) [刘隽, 李兴源, 汤广福2008中国电机工程学报 28 12]

    [6]

    Chang Y, Xu Z 2006 Trans. China Electrotech. Soc. 21 40 (in Chinese) [常勇, 徐政2006电工技术学报 21 40]

    [7]

    Ma Y J, Zhou X S 2003 Proce. CSEE 23 84 (in Chinese) [马幼捷, 周雪松2003中国电机工程学报23 84]

    [8]

    Wang Y, Chen H, Zhou R 2000 Int. J. Electr. Power Energy Sys. 22 463

    [9]

    Fu J, Zhao J, Dimirovsk G M 2006 Proc. CSEE 26 7 (in Chinese) [付俊, 赵军, 乔治·迪米罗夫斯基 2006 中国电机工程学报 26 7]

    [10]

    Hingorani N G, Gyugyi L 2000 Understanding FACTS-Concept and Technology of Flexible AC Transmission Systems (Piscataway: IEEE Press) pp68-69

    [11]

    Tan X, Tong L, Yin Z 1998 International Conference on Power System Technology Beijing, China, 1998 p672

    [12]

    Itkis U 1976 Control Systems of Variable Structure (New York: Wiley) pp32-40

    [13]

    Huang L L, Qi X 2013 Acta Phys. Sin. 62 080507 (in Chinese) [黄丽莲, 齐雪2013 物理学报 62 080507]

    [14]

    Qi D L, Wang Q, Yang J 2011 Chin. Phys. B 20 100505

    [15]

    Kong C C, Chen S H 2009 Chin. Phys. B 18 91

    [16]

    Lou X Y, Cui B T 2008 Chin. Phys. B 17 4434

    [17]

    Hung J Y, Gao W, Hung J C 1993 IEEE Trans. Ind. Electron. 40 2

    [18]

    Ni Y X, Chen S S, Zhang B L 2002 Dynamic Power System Theory and Analysis (Beijing: Tsinghua University Press) pp188-190 (in Chinese) [倪以信, 陈寿孙, 张宝霖2002动态电力系统的理论和分析(北京: 清华大学出版社)第188–190页]

    [19]

    Farsangi M M, Hossein N, Song Y H 2007 IEEE Trans. Power Syst. 22 1061

    [20]

    Liu X L, Wang X 2007 J. Zhengzhou Univ. (Eng. Sci.) 28 87 (in Chinese) [刘宪林, 王鑫 2007 郑州大学学报(工学版) 28 87]

    [21]

    Anderson P M, Fouad A A 1977 Power System Control and Stability (Ames: the Iowa State University Press) pp152-158

    [22]

    Xue A C, Shen C, Mei S W 2006 Auto. Electr. Power Syst. 30 1 (in Chinese) [薛安成, 沈沉, 梅生伟 2006 电力系统自动化 30 1]

    [23]

    Pan X P 2008 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese) [潘学萍2008博士学位论文(杭州: 浙江大学)]

  • [1] 穆鹏华, 陈昊, 刘国鹏, 胡国四. 级联耦合纳米激光器混沌时延特征消除和带宽增强. 物理学报, 2024, 73(10): 104204. doi: 10.7498/aps.73.20231643
    [2] 蒋培, 周沛, 李念强, 穆鹏华, 李孝峰. 外场调控下的纳米激光时延隐藏及不可预测性提升. 物理学报, 2021, 70(11): 114201. doi: 10.7498/aps.70.20210049
    [3] 潘光, 魏静. 一种分数阶混沌系统同步的自适应滑模控制器设计. 物理学报, 2015, 64(4): 040505. doi: 10.7498/aps.64.040505
    [4] 薛楷嘉, 王从庆. 基于在线误差修正自适应SVR的非线性不确定分数阶混沌系统滑模控制. 物理学报, 2015, 64(7): 070502. doi: 10.7498/aps.64.070502
    [5] 安宝冉, 刘国平. 带时延与丢包的网络化多智能体系统控制器设计. 物理学报, 2014, 63(14): 140203. doi: 10.7498/aps.63.140203
    [6] 王斌, 吴超, 朱德兰. 一个新的分数阶混沌系统的翼倍增及滑模同步. 物理学报, 2013, 62(23): 230506. doi: 10.7498/aps.62.230506
    [7] 李安梁, 蔡洪, 张士峰, 白锡斌. 浮球式惯导平台悬浮稳定问题的动力学建模与控制. 物理学报, 2013, 62(15): 150203. doi: 10.7498/aps.62.150203
    [8] 纪良浩, 廖晓峰. 具有不同时延的多智能体系统一致性分析. 物理学报, 2012, 61(15): 150202. doi: 10.7498/aps.61.150202
    [9] 纪良浩, 廖晓峰, 刘群. 时延多智能体系统分组一致性分析. 物理学报, 2012, 61(22): 220202. doi: 10.7498/aps.61.220202
    [10] 吕翎, 李雨珊, 韦琳玲, 于淼, 张檬. 基于滑模控制法实现规则网络的混沌同步. 物理学报, 2012, 61(12): 120504. doi: 10.7498/aps.61.120504
    [11] 路永坤. 受扰统一混沌系统的主动自适应模糊积分滑模控制. 物理学报, 2012, 61(22): 220504. doi: 10.7498/aps.61.220504
    [12] 赵岩岩, 蒋国平. 一类输出耦合时延复杂动态网络故障诊断研究. 物理学报, 2011, 60(11): 110206. doi: 10.7498/aps.60.110206
    [13] 李华青, 廖晓峰, 黄宏宇. 基于神经网络和滑模控制的不确定混沌系统同步. 物理学报, 2011, 60(2): 020512. doi: 10.7498/aps.60.020512
    [14] 郭会军, 刘丁, 赵光宙. 受扰统一混沌系统基于RBF网络的主动滑模控制. 物理学报, 2011, 60(1): 010510. doi: 10.7498/aps.60.010510
    [15] 罗永健, 于茜, 张卫东. 参数不确定时延超混沌系统的脉冲同步方法研究. 物理学报, 2011, 60(11): 110504. doi: 10.7498/aps.60.110504
    [16] 曹鹤飞, 张若洵. 基于滑模控制的分数阶混沌系统的自适应同步. 物理学报, 2011, 60(5): 050510. doi: 10.7498/aps.60.050510
    [17] 刘丁, 闫晓妹. 基于滑模控制实现分数阶混沌系统的投影同步. 物理学报, 2009, 58(6): 3747-3752. doi: 10.7498/aps.58.3747
    [18] 刘福才, 宋佳秋. 基于主动滑模控制的一类混沌系统异结构反同步. 物理学报, 2008, 57(8): 4729-4737. doi: 10.7498/aps.57.4729
    [19] 高 心, 刘兴文. 统一混沌系统的时延模糊控制. 物理学报, 2007, 56(1): 84-90. doi: 10.7498/aps.56.84
    [20] 薛月菊, 冯汝鹏. 连续时间耦合系统中时空混沌的自适应模糊控制. 物理学报, 2001, 50(3): 440-444. doi: 10.7498/aps.50.440
计量
  • 文章访问数:  6240
  • PDF下载量:  410
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-28
  • 修回日期:  2014-07-29
  • 刊出日期:  2014-12-05

/

返回文章
返回