搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属离子掺杂对CuO基纳米复合材料的交换偏置调控

刘奎立 周思华 陈松岭

引用本文:
Citation:

金属离子掺杂对CuO基纳米复合材料的交换偏置调控

刘奎立, 周思华, 陈松岭

Exchange bias tuning of metal ions doped in CuO nanocomposites

Liu Kui-Li, Zhou Si-Hua, Chen Song-Ling
PDF
导出引用
  • 为了研究反铁磁基体中掺杂的金属离子对交换偏置效应的影响, 本文采用非均相沉淀法制备了纳米复合材料. X射线衍射图(XRD)和场发射扫描电子显微镜(SEM) 照片清晰表明CuO纳米复合样品具有统一的颗粒尺寸, 约为80 nm. 通过体系中掺杂磁性金属离子Ni和Fe, 实现了亚铁磁MFe2O4 (M=Cu, Ni)晶粒镶嵌在反铁磁(AFM) CuO 基体中. 在CuO基体中加入少量的Ni能改变两相交界面的磁无序从而生成类自旋玻璃相, 相应提高对铁磁相磁矩的钉扎作用. 同时, 场冷过程中反铁磁相内形成磁畴, 冻结在原始状态或磁场方向上, 畴壁也起到钉扎铁磁自旋的作用, 进而提高交换偏置效应. 随后加入的Ni 会生成各向异性能较大的NiO, 也能够提高交换偏置场. 在带场冷却下, 所有样品均发生垂直交换偏置, 也证明了样品在场冷过程中形成了自旋玻璃相, 正是由于亚铁磁与自旋玻璃相界面上的磁交换耦合, 才导致回线在整个测量范围内发生了向上偏移. 零场冷却和场冷却(ZFC/FC)情况下磁化强度与温度变化曲线(M-T)说明在这些复合材料中的交换偏置效应是由于存在亚铁磁颗粒和类自旋玻璃相界面处的交换耦合作用. 研究发现随着持续掺杂Ni离子, 交换偏置场先缓慢增加后又急剧增加, 生成各向异性能高的反铁磁相NiO 和反铁磁相内的畴态组织是这一结果的原因.
    In this paper, the nanocomposites are synthesized by the non-equal precipitation method to study the effect of the metal ions doped in antiferromagnetic matrix on the exchange bias. XRD patterns and SEM images reveal that the as-synthesized CuO nanocomposites have uniform size (~80 nm), and the ferrimagnetic particles MFe2O4 (M=Cu, Ni) are embedded in the antiferromagnetic (AFM) CuO matrix by doping of magnetic metal ions Ni and Fe. And the ferrimagnetic phase MFe2O4 (M=Cu, Ni) is formed through the addition of a small amount of Fe that reacts with Cu and Ni ions. Effects of different doping amount of Ni on exchange bias are different. A small doping amount of Ni can induce magnetic disorder at the interface of both phases, then the spin-glass-like phase may be formed. The spin-glass-like phases enhance the pinning effect on the magnetic moments of ferrimagnetic phase. Meanwhile, during field cooling process the antiferromagnetic phase splits into domains, which are aligned either with cooling field or in the original antiferromagnetic configuration. The domain wall serves as pinning sites for the magnetic moments of ferromagnetic phase, and the exchange bias effect is increased. The AFM NiO grains with high anisotropic energy are generated, this also increases the exchange bias effect when continuous doping of Ni ions. In the process of field cooling (FC), upward shift occurs in all hysteresis loops, which is perpendicular to the exchange bias. As x=0.08 (x is the concentration of Ni) the perpendicular displacement is 3.6%, this behavior also proves that under FC measurements, the spin-glass-like phase can be formed between the antiferromagnetic nanopaticles. It is the magnetic exchange coupling at the interface between the ferrimagnetic phase and the spin-glass-like phase that result in an upward shift in the entire measurement range. The plot of M versus T under zero field cooling (ZFC) and field cooling (FC) indicates that the exchange bias effect in these composites is ascribed to the exchange coupling at the interface between the ferrimagnetic particles and the spin-glass-like phase. With continuous introduction of magnetic Ni ions, the exchange bias field first increases slowly, then at x=0.08 it increases sharply. The existence of AFM NiO with high anisotropic energy and the domain structure in AFM matrix are the causes of the result.
    • 基金项目: 河南省科技厅基础前沿技术研究计划项目(批准号:122300410168)和河南省教育厅高校青年骨干教师项目(批准号:2012GGJS-181)资助的课题.
    • Funds: Project supported by the Henan Provincial Research Foundation for Basic Research, China (Grant No. 122300410168), and the Young Core Instructor Foundation from the Education Commission of Henan Province, China (Grant No. 2012GGJS-181).
    [1]

    Zhao F, Qiu H M, Pan L Q 2008 J. Phys.:Condens. Matter 20 425208

    [2]

    Zheng R K, Liu H, Zhang X X, Roy V A L, Djuriši A B2004 Appl. Phys. Lett. 85 2589

    [3]

    L Q R, Fang Q Q, Liu Y M 2011 Acta Phys. Sin. 60 047501 (in Chinese) [吕清荣, 方庆清, 刘艳美 2011 物理学报 60 047501]

    [4]

    Kumar P K, Mandal K 2007 J. Appl. Phys. 101 113906

    [5]

    Nogués J, Sort J, Langlais V 2005 Physics Reports 422 65

    [6]

    Meiklejohn W H, Bean C P 1956 Phys. Rev. 105 904

    [7]

    Kodama R H, Berkowitz A E 1999 Phys. Rev. B 59 6321

    [8]

    Luo Y, Zhao G P, Yang H T, Shong N N, Ren X, Ding H F, Cheng Z H 2013 Acta Phys. Sin. 62 176102 (in Chinese) [罗毅, 赵国平, 杨海涛, 宋宁宁, 任肖, 丁浩峰, 成昭华 2013 物理学报 62 176102]

    [9]

    Carpenter R, Vallejo-Fernandez G, Apos K O, Grady 2014 J. Appl. Phys. 115 17D715

    [10]

    Dogan Kaya, Pavel N. L, Priyanga Jayathilaka, Hillary Kirby, Casey W. M, Roshchin I V 2013 J. Appl. Phys. 113 17D717

    [11]

    Kosub T, Bachmatiuk A, Makarov D, Baunack S, Neu V, Wolter A, Rmmeli M H, Schmidt O G 2012 J. Appl. Phys. 112 123917

    [12]

    Ma Z Z, Li J Q, Chen Z P, Tian Z B, Hu X J, Hang H J 2014 Chin. Phyc. B 23 097505

    [13]

    Dai B, Lei Y, Shao X P, Ni J 2010 J. Alloys Compd. 490 427

    [14]

    Shi Z, Du j, Zhou S M 2014 Chin. Phyc. B 23 027503

    [15]

    Òscar I, Xavier B, Amílcar L 2008 J. Phys. D: Appl. Phys. 41 134010

    [16]

    Karmakar S, Taran S, Bose E, Chaudhuri B K 2008 Phys. Rev. B 77 144409

    [17]

    Passamani E C, Larica C, Marques C, Takeuchi A Y, Proveti J R, Favre-Nicolin E 2007 J. Magn. Magn. Mater. 314 21

    [18]

    Punnoose A, Seehra M S 2002 J. Appl. Phys. 91 7766

    [19]

    Leighton C, Nogués J, Jönsson-Åkerman B J, Schuller Ivan K 2000 Appl. Phys. Lett. 84 3466

  • [1]

    Zhao F, Qiu H M, Pan L Q 2008 J. Phys.:Condens. Matter 20 425208

    [2]

    Zheng R K, Liu H, Zhang X X, Roy V A L, Djuriši A B2004 Appl. Phys. Lett. 85 2589

    [3]

    L Q R, Fang Q Q, Liu Y M 2011 Acta Phys. Sin. 60 047501 (in Chinese) [吕清荣, 方庆清, 刘艳美 2011 物理学报 60 047501]

    [4]

    Kumar P K, Mandal K 2007 J. Appl. Phys. 101 113906

    [5]

    Nogués J, Sort J, Langlais V 2005 Physics Reports 422 65

    [6]

    Meiklejohn W H, Bean C P 1956 Phys. Rev. 105 904

    [7]

    Kodama R H, Berkowitz A E 1999 Phys. Rev. B 59 6321

    [8]

    Luo Y, Zhao G P, Yang H T, Shong N N, Ren X, Ding H F, Cheng Z H 2013 Acta Phys. Sin. 62 176102 (in Chinese) [罗毅, 赵国平, 杨海涛, 宋宁宁, 任肖, 丁浩峰, 成昭华 2013 物理学报 62 176102]

    [9]

    Carpenter R, Vallejo-Fernandez G, Apos K O, Grady 2014 J. Appl. Phys. 115 17D715

    [10]

    Dogan Kaya, Pavel N. L, Priyanga Jayathilaka, Hillary Kirby, Casey W. M, Roshchin I V 2013 J. Appl. Phys. 113 17D717

    [11]

    Kosub T, Bachmatiuk A, Makarov D, Baunack S, Neu V, Wolter A, Rmmeli M H, Schmidt O G 2012 J. Appl. Phys. 112 123917

    [12]

    Ma Z Z, Li J Q, Chen Z P, Tian Z B, Hu X J, Hang H J 2014 Chin. Phyc. B 23 097505

    [13]

    Dai B, Lei Y, Shao X P, Ni J 2010 J. Alloys Compd. 490 427

    [14]

    Shi Z, Du j, Zhou S M 2014 Chin. Phyc. B 23 027503

    [15]

    Òscar I, Xavier B, Amílcar L 2008 J. Phys. D: Appl. Phys. 41 134010

    [16]

    Karmakar S, Taran S, Bose E, Chaudhuri B K 2008 Phys. Rev. B 77 144409

    [17]

    Passamani E C, Larica C, Marques C, Takeuchi A Y, Proveti J R, Favre-Nicolin E 2007 J. Magn. Magn. Mater. 314 21

    [18]

    Punnoose A, Seehra M S 2002 J. Appl. Phys. 91 7766

    [19]

    Leighton C, Nogués J, Jönsson-Åkerman B J, Schuller Ivan K 2000 Appl. Phys. Lett. 84 3466

  • [1] 王可欣, 粟傈, 童良乐. 基于反铁磁的无外场辅助自旋轨道矩磁隧道结模型分析. 物理学报, 2023, 72(19): 198504. doi: 10.7498/aps.72.20230901
    [2] 朱照照, 冯正, 蔡建旺. 基于IrMn/Fe/Pt交换偏置结构的无场自旋太赫兹源. 物理学报, 2022, 71(4): 048703. doi: 10.7498/aps.71.20211831
    [3] 朱照照, 冯正, 蔡建旺. 基于IrMn/Fe/Pt交换偏置结构的无场自旋太赫兹源. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211831
    [4] 文林, 胡爱元. 双二次交换作用和各向异性对反铁磁体相变温度的影响. 物理学报, 2020, 69(10): 107501. doi: 10.7498/aps.69.20200077
    [5] 方雨青, 金钻明, 陈海洋, 阮舜逸, 李炬赓, 曹世勋, 彭滟, 马国宏, 朱亦鸣. 高通量制备的SmxPr1–xFeO3晶体中反铁磁自旋模式和晶体场跃迁的太赫兹光谱. 物理学报, 2020, 69(20): 209501. doi: 10.7498/aps.69.20200732
    [6] 李永超, 周航, 潘丹峰, 张浩, 万建国. Co/Co3O4/PZT多铁复合薄膜的交换偏置效应及其磁电耦合特性. 物理学报, 2015, 64(9): 097701. doi: 10.7498/aps.64.097701
    [7] 胡妮, 刘雍, 汤五丰, 裴玲, 方鹏飞, 熊锐, 石兢. La0.4Ca0.6MnO3中Mn-位Fe和Cr掺杂对磁性质的影响. 物理学报, 2014, 63(23): 237502. doi: 10.7498/aps.63.237502
    [8] 闫静, 祁先进, 王寅岗. 退火对IrMn基磁隧道结多层膜热稳定性的影响. 物理学报, 2011, 60(8): 088106. doi: 10.7498/aps.60.088106
    [9] 刘甦, 李斌, 王玮, 汪军, 刘楣. 铁基化合物 SrFeAsF以及 Co掺杂超导体SrFe0.875Co0.125AsF的电子结构和磁性. 物理学报, 2010, 59(6): 4245-4252. doi: 10.7498/aps.59.4245
    [10] 刘先锋, 韩玖荣, 江学范. 阻挫三角反铁磁AgCrO2螺旋自旋序的第一性原理研究. 物理学报, 2010, 59(9): 6487-6493. doi: 10.7498/aps.59.6487
    [11] 田宏玉, 胡经国, 许小勇. 铁磁/反铁磁双层膜中冷却场对交换偏置场的影响. 物理学报, 2009, 58(4): 2757-2761. doi: 10.7498/aps.58.2757
    [12] 于 宙, 李 祥, 龙 雪, 程兴旺, 王晶云, 刘 颖, 曹茂盛, 王富耻. Mn掺杂ZnO稀磁半导体材料的制备和磁性研究. 物理学报, 2008, 57(7): 4539-4544. doi: 10.7498/aps.57.4539
    [13] 许小勇, 潘 靖, 胡经国. 交换偏置双层膜中的反铁磁自旋结构及其交换各向异性. 物理学报, 2007, 56(9): 5476-5482. doi: 10.7498/aps.56.5476
    [14] 王 漪, 孙 雷, 韩德栋, 刘力锋, 康晋锋, 刘晓彦, 张 兴, 韩汝琦. ZnCoO稀磁半导体的室温磁性. 物理学报, 2006, 55(12): 6651-6655. doi: 10.7498/aps.55.6651
    [15] 王先杰, 隋 郁, 千正男, 刘志国, 苗继鹏, 黄喜强, 吕 喆, 朱瑞滨, 程金光, 苏文辉. Fe位Al掺杂对Sr2FeMoO6磁结构和磁输运性质的影响. 物理学报, 2006, 55(2): 849-853. doi: 10.7498/aps.55.849
    [16] 林秋宝, 李仁全, 曾永志, 朱梓忠. TM掺杂的Ⅲ-Ⅴ族稀磁半导体电磁性质的第一原理计算. 物理学报, 2006, 55(2): 873-878. doi: 10.7498/aps.55.873
    [17] 潘 靖, 马 梅, 周 岚, 胡经国. 外应力场下铁磁/反铁磁双层膜系统的铁磁共振性质. 物理学报, 2006, 55(2): 897-903. doi: 10.7498/aps.55.897
    [18] 潘 靖, 陶永春, 胡经国. 外应力场下铁磁/反铁磁双层膜系统中的交换偏置. 物理学报, 2006, 55(6): 3032-3037. doi: 10.7498/aps.55.3032
    [19] 滕蛟, 蔡建旺, 熊小涛, 赖武彦, 朱逢吾. NiFe/FeMn双层膜交换偏置的形成及热稳定性研究. 物理学报, 2004, 53(1): 272-275. doi: 10.7498/aps.53.272
    [20] 李明华, 于广华, 何珂, 朱逢吾, 赖武彦. 具有分隔层Bi的反铁磁/铁磁双层薄膜间的短程交换耦合. 物理学报, 2002, 51(12): 2854-2857. doi: 10.7498/aps.51.2854
计量
  • 文章访问数:  4768
  • PDF下载量:  189
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-23
  • 修回日期:  2015-02-27
  • 刊出日期:  2015-07-05

/

返回文章
返回