搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体填充金属光子晶体慢波结构色散特性研究

傅涛 杨梓强 欧阳征标

引用本文:
Citation:

等离子体填充金属光子晶体慢波结构色散特性研究

傅涛, 杨梓强, 欧阳征标

Dispersion properties of plasma-filled metallic photonic crystal slow-wave structure

Fu Tao, Yang Zi-Qiang, Ouyang Zheng-Biao
PDF
导出引用
  • 等离子体填充慢波器件为高效率、高功率真空电子微波源的发展提供了新的途径, 但其仿真和理论都具有一定的难度. 本文将通过轮辐天线加载激励信号的方法引入到等离子体填充金属光子晶体慢波结构(SWS)的色散特性仿真分析中, 研究了慢波结构参数和等离子体密度对等离子体填充慢波结构色散特性的影响. 结果表明, 无等离子体填充时, 通过轮辐天线加载激励信号方式得到的色散特性与其他方法差别不大; 与已有结果对比表明, 该方法适用于等离子体填充慢波结构的分析. 为了减小轮辐天线对腔体谐振频率的影响, 需要适当减薄轮辐天线的厚度, 并尽可能缩短其与反射面之间的距离. 天线的厚度越大越能激励慢波场, 越小谐振模式越容易被激励; 慢波结构周期膜片外半径和厚度对色散特性影响不大, 周期长度和膜片内半径对色散特性影响较大; 频率和相速色散曲线随等离子体密度上升而整体向高频区移动; 等离子体填充对低频模点的影响要大于对高频模点的影响; 对于慢波器件, 需要选择高频模点工作模式, 以减少腔的尺寸并降低电子注的初速度.
    Plasma-filled slow-wave devices provide a new way to develop high efficiency and high power vacuum-electron microwave sources, but their theoretical analysis and simulation is difficult. This paper introduces the wheel spoke antenna to excite signals for analyzing the dispersion characteristics of resonant cavity with plasma-filled metallic photonic crystal slow-wave structure (SWS). Influences of parameters of the SWS and plasma density on dispersion characteristics of the SWS are studied. Results show that there is little difference in dispersion characteristics obtained by wheel spoke antenna excitation of signals and other methods without plasma filling. When plasma fills in the SWS, the frequency of zero mode is consistent with the previous results obtained by other methods. Hence, both the results with and without plasma filling demonstrate that the wheel spoke antenna signal-excitation method is effective. Moreover, decreasing the thickness of wheel spoke antenna properly and the distance between the antenna and reflection surface of the metal plate can reduce the wheel spoke antenna influence on the cavity resonance frequency. Furthermore, thicker antenna can excite the slow wave field easily, while thinner antenna can excite the resonant mode easily. Besides, the outer radius and thickness of the SWS plate have little influence on the dispersion characteristics, while the period length and the inner radius of the SWS plate have greater influence on the dispersion characteristics. In addition, the dispersion curves of frequency and phase velocity will move to higher frequency regions with the increase of plasma density. Further, the influence of plasma filling on low-order modes is greater than that on higher order modes. It is also found that the higher-order mode operation can reduce the size of cavity and the velocity of the electron beam.
      通信作者: 欧阳征标, zbouyang@szu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61275043, 60877034)和深圳市科信局(批准号: 200805, CXB201105050064A)资助的课题.
      Corresponding author: Ouyang Zheng-Biao, zbouyang@szu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61275043, 60877034), and the Shenzhen Bureau of China (Grant Nos. 200805, CXB201105050064A).
    [1]

    Liu W X, Yang Z Q, Liang Z 2004 Int. J. Infrared Milli. 25 1053

    [2]

    Liu W X, Yang Z Q, Liang Z 2004 International Vacuum Electronics Conference Monterey, USA, April 27-28, 2004 p390

    [3]

    Liu W X, Yang Z Q, Liang Z, Li D Z, Kazuo I, Shi Z J, Lan F, Park G S, Liu S G 2008 IEEE Trans. Plasma Sci. 36 748

    [4]

    Xie Y T, Yang L X 2011 Chin. Phy. B 20 1674

    [5]

    Qi L M, Yang Z Q, Lan F, Gao X, Li D Z 2010 Chin. Phys. B 19 1674

    [6]

    Hou J, Hao D S, Zhou Z P 2009 Optical Technique 35 93 (in Chinese) [侯金, 郜定山, 周治平 2009 光学技术 35 93]

    [7]

    Liu Y Z, Li Z Y 2008 Acta Phys. Sin. 37 658 (in Chinese) [刘娅钊, 李志远 2008 物理学报 37 658]

    [8]

    Qi L M, Yang Z Q, Gao X, Liang Z 2007 Chinese Journal of Quantum Electronics 24 529 (in Chinese) [亓丽梅, 杨梓强, 高喜, 梁正 2007 量子电子学报 24 529]

    [9]

    Qi L M, Fu Tao, Yang Z Q, Yin S R 2012 Chinese Journal of Quantum Electronics 29 513 (in Chinese) [亓丽梅, 傅涛, 杨梓强, 殷淑容 2012 量子电子学报 29 513]

    [10]

    Gao X, Yang Z Q, Qi L M, Lan F, Shi Z J, Li D Z, Liang Z 2009 Chin. Phy. B 18 2452

    [11]

    Gao X, Yang Z Q, Hou J, Qi L M, Lan F, Shi Z J, Li D Z, Liang Z 2009 Acta Phys. Sin. 58 1105 (in Chinese) [高喜, 杨梓强, 候钧, 亓丽梅, 兰峰, 史宗君, 李大治, 梁正 2009 物理学报 58 1105]

    [12]

    Fu T, Yang Z Q, Shi Z J, Lan F, Gao X 2012 Acta Electronic Sinic 40 538 (in Chinese) [傅涛, 杨梓强, 史宗君, 兰峰, 高喜 2012 电子学报 40 538]

    [13]

    Fu T, Yang Z Q, Shi Z J, Lan F, Li D Z, Gao X 2013 Phys. Plasma 20 023109

    [14]

    Fu T, Yang Z Q, Lan F, Shi Z J 2014 High Power Laser and Particle Beams 26 043001 (in Chinese) [傅涛, 杨梓强, 兰峰, 史宗君 2014 强激光与粒子束 26 043001]

    [15]

    Liu S G, Li H F, Wang W X 1985 Introduction to Microwave Electronics (Beijing:National Defence Industry Press) p117-118 (in Chinese) [刘盛纲, 李宏福, 王文祥 1985 微波电子学导论 (北京: 国防工业出版社) 第 117–118 页]

    [16]

    Carmel Y, Guo H, Lou W R, Abe D, Granatstein V L, Destler W W 1990 Appl. Phys. Lett. 57 1304

    [17]

    Guo H Z, Carmel Y, Lou W R, Chen L, Rodgers J, Abe D K, Bromborsky A, Destler W, Granatstein V L 1992 IEEE Trans. Microw. Theory Tech. 40 2086

    [18]

    Gao X, Yang Z Q, Xu Y, Qi L M, Li D Z, Shi Z J, Lan F, Liang Z 2008 Nucl. Instrum. Meth. A 592 292

  • [1]

    Liu W X, Yang Z Q, Liang Z 2004 Int. J. Infrared Milli. 25 1053

    [2]

    Liu W X, Yang Z Q, Liang Z 2004 International Vacuum Electronics Conference Monterey, USA, April 27-28, 2004 p390

    [3]

    Liu W X, Yang Z Q, Liang Z, Li D Z, Kazuo I, Shi Z J, Lan F, Park G S, Liu S G 2008 IEEE Trans. Plasma Sci. 36 748

    [4]

    Xie Y T, Yang L X 2011 Chin. Phy. B 20 1674

    [5]

    Qi L M, Yang Z Q, Lan F, Gao X, Li D Z 2010 Chin. Phys. B 19 1674

    [6]

    Hou J, Hao D S, Zhou Z P 2009 Optical Technique 35 93 (in Chinese) [侯金, 郜定山, 周治平 2009 光学技术 35 93]

    [7]

    Liu Y Z, Li Z Y 2008 Acta Phys. Sin. 37 658 (in Chinese) [刘娅钊, 李志远 2008 物理学报 37 658]

    [8]

    Qi L M, Yang Z Q, Gao X, Liang Z 2007 Chinese Journal of Quantum Electronics 24 529 (in Chinese) [亓丽梅, 杨梓强, 高喜, 梁正 2007 量子电子学报 24 529]

    [9]

    Qi L M, Fu Tao, Yang Z Q, Yin S R 2012 Chinese Journal of Quantum Electronics 29 513 (in Chinese) [亓丽梅, 傅涛, 杨梓强, 殷淑容 2012 量子电子学报 29 513]

    [10]

    Gao X, Yang Z Q, Qi L M, Lan F, Shi Z J, Li D Z, Liang Z 2009 Chin. Phy. B 18 2452

    [11]

    Gao X, Yang Z Q, Hou J, Qi L M, Lan F, Shi Z J, Li D Z, Liang Z 2009 Acta Phys. Sin. 58 1105 (in Chinese) [高喜, 杨梓强, 候钧, 亓丽梅, 兰峰, 史宗君, 李大治, 梁正 2009 物理学报 58 1105]

    [12]

    Fu T, Yang Z Q, Shi Z J, Lan F, Gao X 2012 Acta Electronic Sinic 40 538 (in Chinese) [傅涛, 杨梓强, 史宗君, 兰峰, 高喜 2012 电子学报 40 538]

    [13]

    Fu T, Yang Z Q, Shi Z J, Lan F, Li D Z, Gao X 2013 Phys. Plasma 20 023109

    [14]

    Fu T, Yang Z Q, Lan F, Shi Z J 2014 High Power Laser and Particle Beams 26 043001 (in Chinese) [傅涛, 杨梓强, 兰峰, 史宗君 2014 强激光与粒子束 26 043001]

    [15]

    Liu S G, Li H F, Wang W X 1985 Introduction to Microwave Electronics (Beijing:National Defence Industry Press) p117-118 (in Chinese) [刘盛纲, 李宏福, 王文祥 1985 微波电子学导论 (北京: 国防工业出版社) 第 117–118 页]

    [16]

    Carmel Y, Guo H, Lou W R, Abe D, Granatstein V L, Destler W W 1990 Appl. Phys. Lett. 57 1304

    [17]

    Guo H Z, Carmel Y, Lou W R, Chen L, Rodgers J, Abe D K, Bromborsky A, Destler W, Granatstein V L 1992 IEEE Trans. Microw. Theory Tech. 40 2086

    [18]

    Gao X, Yang Z Q, Xu Y, Qi L M, Li D Z, Shi Z J, Lan F, Liang Z 2008 Nucl. Instrum. Meth. A 592 292

  • [1] 骆新耀, 薛宇哲, 徐彻, 杜创洲, 刘庆想. 基于T形四周期谐振慢波结构的X波段高功率微波产生技术的理论与仿真. 物理学报, 2024, 73(9): 094101. doi: 10.7498/aps.73.20231921
    [2] 季曾超, 陈仕修, 高深, 陈俊, 田微. 真空二极管辐射微波的机理分析. 物理学报, 2016, 65(14): 145202. doi: 10.7498/aps.65.145202
    [3] 王茹, 王向贤, 杨华, 叶松. TE0导模干涉刻写周期可调亚波长光栅理论研究. 物理学报, 2016, 65(9): 094206. doi: 10.7498/aps.65.094206
    [4] 傅涛, 欧阳征标. 等离子体填充金属光子晶体Cherenkov辐射源模拟研究. 物理学报, 2016, 65(7): 074208. doi: 10.7498/aps.65.074208
    [5] 王光强, 王建国, 李爽, 王雪锋, 陆希成, 宋志敏. 0.34 THz大功率过模表面波振荡器研究. 物理学报, 2015, 64(5): 050703. doi: 10.7498/aps.64.050703
    [6] 赵文娟, 陈再高, 郭伟杰. 慢波结构爆炸发射对高功率太赫兹表面波振荡器的影响. 物理学报, 2015, 64(15): 150702. doi: 10.7498/aps.64.150702
    [7] 王冬, 徐莎, 曹延伟, 秦奋. 光子晶体高功率微波模式转换器设计. 物理学报, 2014, 63(1): 018401. doi: 10.7498/aps.63.018401
    [8] 王兵, 文光俊, 王文祥. 同轴交错圆盘加载波导慢波结构高频特性的研究. 物理学报, 2014, 63(22): 224101. doi: 10.7498/aps.63.224101
    [9] 韦朴, 周明干, 朱露, 张劲, 王雪峰, 吕东亚, 陈宁, 杨明华, 孙小菡. 螺旋线慢波结构夹持性能测试方法研究. 物理学报, 2013, 62(9): 094401. doi: 10.7498/aps.62.094401
    [10] 李爽, 王建国, 童长江, 王光强, 陆希成, 王雪锋. 大功率0.34 THz辐射源中慢波结构的优化设计. 物理学报, 2013, 62(12): 120703. doi: 10.7498/aps.62.120703
    [11] 刘洋, 徐进, 许雄, 沈飞, 魏彦玉, 黄民智, 唐涛, 王文祥, 宫玉彬. V形曲折矩形槽慢波结构的研究. 物理学报, 2012, 61(15): 154208. doi: 10.7498/aps.61.154208
    [12] 易红霞, 肖刘, 刘濮鲲, 郝保良, 李飞, 李国超. 基于电子注可回收能力的空间行波管慢波结构的优化设计. 物理学报, 2011, 60(6): 068403. doi: 10.7498/aps.60.068403
    [13] 黎燕林, 薛谦忠, 杜朝海, 郝保良. 修正的频域有限差分法在二维金属光子晶体分析中的应用. 物理学报, 2010, 59(4): 2556-2563. doi: 10.7498/aps.59.2556
    [14] 韩勇, 刘燕文, 丁耀根, 刘濮鲲. 螺旋线慢波结构中界面热阻率的研究. 物理学报, 2009, 58(3): 1806-1811. doi: 10.7498/aps.58.1806
    [15] 徐 燕, 胡经国. 平面约束下金属铁磁条中平行抽运微波磁场的非稳定阈值研究. 物理学报, 2008, 57(7): 4521-4526. doi: 10.7498/aps.57.4521
    [16] 路志刚, 魏彦玉, 宫玉彬, 吴周淼, 王文祥. 具有任意槽的矩形波导栅慢波结构高频特性的研究. 物理学报, 2007, 56(6): 3318-3323. doi: 10.7498/aps.56.3318
    [17] 路志刚, 宫玉彬, 魏彦玉, 王文祥. 二维金属光子晶体的带结构研究. 物理学报, 2006, 55(7): 3590-3596. doi: 10.7498/aps.55.3590
    [18] 张 军, 钟辉煌. 高功率O型慢波器件的纵向模式选择研究. 物理学报, 2005, 54(1): 206-210. doi: 10.7498/aps.54.206
    [19] 张 勇, 莫元龙, 徐锐敏, 延 波, 谢小强. 等离子体填充盘荷波导高频特性分析. 物理学报, 2005, 54(11): 5239-5245. doi: 10.7498/aps.54.5239
    [20] 岳玲娜, 王文祥, 魏彦玉, 宫玉彬. 同轴任意槽形周期圆波导慢波结构色散特性的研究. 物理学报, 2005, 54(9): 4223-4228. doi: 10.7498/aps.54.4223
计量
  • 文章访问数:  4431
  • PDF下载量:  161
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-05
  • 修回日期:  2015-03-25
  • 刊出日期:  2015-09-05

/

返回文章
返回