搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于模糊C均值聚类小数据量计算最大Lyapunov指数的新方法

周双 冯勇 吴文渊 汪维华

引用本文:
Citation:

一种基于模糊C均值聚类小数据量计算最大Lyapunov指数的新方法

周双, 冯勇, 吴文渊, 汪维华

A novel method based on the fuzzy C-means clustering to calculate the maximal Lyapunov exponent from small data

Zhou Shuang, Feng Yong, Wu Wen-Yuan, Wang Wei-Hua
PDF
导出引用
  • 在小数据量计算最大Lyapunov指数的过程中, 为了减少人为因素识别线性区域带来的误差, 提出一种基于模糊C 均值聚类的新方法. 该方法根据发散程度指数曲线的变化特征, 利用分类算法进行识别. 首先, 利用小数据量算法对混沌时间序列进行计算得到发散程度指数集合; 其次, 利用模糊C均值聚类算法对发散程度指数集合进行分类, 得到不饱和数据; 然后, 对不饱和的二阶差分数据进行分类, 得到零附近波动数据并剔除粗大误差, 再对保留的有效数据利用统计方法识别出线性区域; 最后, 对线性区域进行最小二乘法拟合得到最大Lyapunov指数. 为了验证该算法的有效性, 对著名Logistic 和Hnon混沌系统进行了仿真, 所得结果接近理论值. 实验表明, 所提出的新方法与主观识别方法比较, 计算结果更加准确.
    In order to reduce errors caused by human factors to identify the linear region, we propose a new method based on the fuzzy C-means clustering for calculating the maximum Lyapunov exponent from small data. The method based on the changing characteristic of divergence index curve is used to identify the linear region. Firstly, the divergence index data are calculated from the small data algorithm for the given chaotic time series. Secondly, the fuzzy C-means clustering method is used for dividing the data into two classes (unsaturated and saturated data), and the unsaturated data are retained. Thirdly, the retained data are divided by the same clustering method into three classes (positive fluctuation data, zero fluctuation data and negative fluctuation data), and the zero fluctuation data are retained. Fourthly, the 3$ criterion is used for excluding gross errors to retain the valid from the selected data. Finally, the regression analysis and statistical test are used to identify the linear region from the valid data. The effectiveness of the proposed method can be demonstrated by the famous chaotic systems of Logistic and Henon. The calculated results are closr to the theoretical values than the subjective method. Experimental results show that the proposed new approach is easier to operate, more efficient and more accurate as compared with the subjective recognition. But this method has its own shortcomings. (1) As the new method is verified by the simulation experiment, there exists no strict mathematical proof. (2) Since the difference algorithm is used in this new method, it will miss some detailed information in some cases. (3) The calculation accuracy still needs to be improved, so this method only serves as a reference to detect the linear region, it can not be applied to high precision engineering field. Considering the deficiencies of the new method, we will make further research to improve the calculation method for maximum Lyapunovexponent, so as to make it solve the real-time problem of the signal detection, and find the accurate location of abrupt climate change in the field of meteorology, to provide accurate satellite launch safety period in the field of space weather and other aspects. In short, studying the largest Lyapunov exponent from chaotic time series has a wide application prospect and practical significance.
      通信作者: 周双, zhoushuang@cigit.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11301524) 和重庆市基础与前沿研究计划院士专项(批准号: cstc2015jcyjys40001)资助的课题.
      Corresponding author: Zhou Shuang, zhoushuang@cigit.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11301524) and the Chongqing Academicians Special Project Based on the Basic and Frontier Reaearches, China (Grant No. cstc2015jcyjys40001).
    [1]

    Yu S M 2011 Chaotic Systems and Chaotic Circuits: Principle, Design and Its Application in Communications (Xian: Xidian University Press) p4 (in Chinese) [禹思敏 2011 混沌系统与混沌电路: 原理、设计及其在通信中的应用 (西安: 西安电子科技大学出版社) 第4页]

    [2]

    Wang W J, Ye M, Chen X W 1994 Advances in Water Science 2 87 (in Chinese) [王文均, 叶敏, 陈显维 1994 水科学进展 2 87]

    [3]

    Zhou S, Feng Y, Wu W Y, Li Y, Liu J 2014 Res. Astron. Astronphys. 14 104

    [4]

    L J H, Zhan Y, Lu J A 2000 Proceedings of the CSEE 20 80 (in Chinese) [吕金虎, 占勇, 陆君安 2000 中国电机工程学报 20 80]

    [5]

    Packard N H, Crutchfield J, Famrmer J 1980 Phys. Rev. Lett. 45 712

    [6]

    Yu S M 2008 Acta Phys. Sin. 57 3374 (in Chinese) [禹思敏 2008 物理学报 57 3374]

    [7]

    Yu S M, Tang W K S, L J H, Chen G R 2008 IEEE T. Circuits - II 55 1168

    [8]

    Shen C W, Yu S M, L J H, Chen G R 2014 IEEE T. Circuits - I 61 854

    [9]

    Shen C W, Yu S M, L J H, Chen G R 2014 IEEE T. Circuits - I 61 2380

    [10]

    Li Q X, Li K J 2007 Publ. Astron. Soc. Jpn. 59 983

    [11]

    Xian M, Zhuang Z W, Xiao S P, Guo G R 1998 Journal of National University of Defense Techonlogy 20 60 (in Chinese) [鲜明, 庄钊文, 肖顺平, 郭桂蓉 1998 国防科技大学学报 20 60]

    [12]

    L J H, Lu J A, Chen S H 2002 Chaotic time series analysis and its application (Wuhan: Wuhan University Press) p73 (in Chinese) [吕金虎, 陆君安, 陈士华 2002 混沌时间序列分析及其应用 (武汉: 武汉大学出版社) 第73页]

    [13]

    Hubertus F, Udwadia F E, Proskurowski W 1997 Physica D 101 1

    [14]

    Shimada I, Nagashima T 1979 Prog. Theor. Phys. 61 1605

    [15]

    Wolf A, Swift J B, Swinney H L, Vastano J A 1985 Physica D 16 285

    [16]

    Briggs K 1990 Phys. Lett. A 151 27

    [17]

    Rosenstein M T, Collins J J, de Luca C J 1993 Physica D 65 117

    [18]

    Barna G, Tsuda I 1993 Phys. Lett. A 175 421

    [19]

    Jiang H F, Ma H J, Wei X Y, Wen W G 2006 Journal of the China Railway Society 28 63 (in Chinese) [蒋海峰, 马瑞军, 魏学业, 温伟刚 2006 铁道学报 28 63]

    [20]

    Xu X K 2008 Ph.D.Dissertation (Dalian: Dalian Maritime University) (in Chinese) [许小可 2008 博士论文 (大连: 大连海事大学)]

    [21]

    Kantz H 1994 Phys. Lett. A 185 77

    [22]

    Liang Y, Meng Q, Lu J R 2006 Technical Acoustics 25 463 (in Chinese) [梁勇, 孟桥, 陆佶人 2006 声学技术 25 463]

    [23]

    Yao T L 2013 Ph.D.Dissertation (Shanghai: East China University of Science and Technology) (in Chinese) [姚天亮 2013 博士论文 (上海: 华东理工大学)]

    [24]

    Yang S Q, Zhang X H, Zhao C A 2000 Acta Phys. Sin. 49 636 (in Chinese) [杨绍清, 章新华, 赵长安 2000 物理学报 49 636]

    [25]

    Lu S, Wang H Y 2006 Acta Phys. Sin. 55 572 (in Chinese) [卢山, 王海燕 2006 物理学报 55 572]

    [26]

    Lu Z B 2008 Ph. D. Dissertation (Wuhan: Chinese People's Liberation Army Navy Project University) (in Chinese) [陆振波 2008 博士论文 (武汉: 中国人民解放军海军工程大学)]

    [27]

    Yang Y F, Wu M J, Gao Z, Wu Y F, Ren X M 2012 Journal of Vibration Measurement Diagnosis 32 371 (in Chinese) [杨永锋, 仵敏娟, 高喆, 吴亚锋, 任兴民 2012 振动、测试与诊断 32 371]

    [28]

    Jain A K 2010 Pattern Recogn. Lett. 31 651

    [29]

    May R M 1976 Nature 261 459

    [30]

    Hnon M 1976 Commun. Math. Phys. 50 69

    [31]

    Zhang Y P, Sun W H, Liu C A 2010 Chin. Phys. B 19 050512

  • [1]

    Yu S M 2011 Chaotic Systems and Chaotic Circuits: Principle, Design and Its Application in Communications (Xian: Xidian University Press) p4 (in Chinese) [禹思敏 2011 混沌系统与混沌电路: 原理、设计及其在通信中的应用 (西安: 西安电子科技大学出版社) 第4页]

    [2]

    Wang W J, Ye M, Chen X W 1994 Advances in Water Science 2 87 (in Chinese) [王文均, 叶敏, 陈显维 1994 水科学进展 2 87]

    [3]

    Zhou S, Feng Y, Wu W Y, Li Y, Liu J 2014 Res. Astron. Astronphys. 14 104

    [4]

    L J H, Zhan Y, Lu J A 2000 Proceedings of the CSEE 20 80 (in Chinese) [吕金虎, 占勇, 陆君安 2000 中国电机工程学报 20 80]

    [5]

    Packard N H, Crutchfield J, Famrmer J 1980 Phys. Rev. Lett. 45 712

    [6]

    Yu S M 2008 Acta Phys. Sin. 57 3374 (in Chinese) [禹思敏 2008 物理学报 57 3374]

    [7]

    Yu S M, Tang W K S, L J H, Chen G R 2008 IEEE T. Circuits - II 55 1168

    [8]

    Shen C W, Yu S M, L J H, Chen G R 2014 IEEE T. Circuits - I 61 854

    [9]

    Shen C W, Yu S M, L J H, Chen G R 2014 IEEE T. Circuits - I 61 2380

    [10]

    Li Q X, Li K J 2007 Publ. Astron. Soc. Jpn. 59 983

    [11]

    Xian M, Zhuang Z W, Xiao S P, Guo G R 1998 Journal of National University of Defense Techonlogy 20 60 (in Chinese) [鲜明, 庄钊文, 肖顺平, 郭桂蓉 1998 国防科技大学学报 20 60]

    [12]

    L J H, Lu J A, Chen S H 2002 Chaotic time series analysis and its application (Wuhan: Wuhan University Press) p73 (in Chinese) [吕金虎, 陆君安, 陈士华 2002 混沌时间序列分析及其应用 (武汉: 武汉大学出版社) 第73页]

    [13]

    Hubertus F, Udwadia F E, Proskurowski W 1997 Physica D 101 1

    [14]

    Shimada I, Nagashima T 1979 Prog. Theor. Phys. 61 1605

    [15]

    Wolf A, Swift J B, Swinney H L, Vastano J A 1985 Physica D 16 285

    [16]

    Briggs K 1990 Phys. Lett. A 151 27

    [17]

    Rosenstein M T, Collins J J, de Luca C J 1993 Physica D 65 117

    [18]

    Barna G, Tsuda I 1993 Phys. Lett. A 175 421

    [19]

    Jiang H F, Ma H J, Wei X Y, Wen W G 2006 Journal of the China Railway Society 28 63 (in Chinese) [蒋海峰, 马瑞军, 魏学业, 温伟刚 2006 铁道学报 28 63]

    [20]

    Xu X K 2008 Ph.D.Dissertation (Dalian: Dalian Maritime University) (in Chinese) [许小可 2008 博士论文 (大连: 大连海事大学)]

    [21]

    Kantz H 1994 Phys. Lett. A 185 77

    [22]

    Liang Y, Meng Q, Lu J R 2006 Technical Acoustics 25 463 (in Chinese) [梁勇, 孟桥, 陆佶人 2006 声学技术 25 463]

    [23]

    Yao T L 2013 Ph.D.Dissertation (Shanghai: East China University of Science and Technology) (in Chinese) [姚天亮 2013 博士论文 (上海: 华东理工大学)]

    [24]

    Yang S Q, Zhang X H, Zhao C A 2000 Acta Phys. Sin. 49 636 (in Chinese) [杨绍清, 章新华, 赵长安 2000 物理学报 49 636]

    [25]

    Lu S, Wang H Y 2006 Acta Phys. Sin. 55 572 (in Chinese) [卢山, 王海燕 2006 物理学报 55 572]

    [26]

    Lu Z B 2008 Ph. D. Dissertation (Wuhan: Chinese People's Liberation Army Navy Project University) (in Chinese) [陆振波 2008 博士论文 (武汉: 中国人民解放军海军工程大学)]

    [27]

    Yang Y F, Wu M J, Gao Z, Wu Y F, Ren X M 2012 Journal of Vibration Measurement Diagnosis 32 371 (in Chinese) [杨永锋, 仵敏娟, 高喆, 吴亚锋, 任兴民 2012 振动、测试与诊断 32 371]

    [28]

    Jain A K 2010 Pattern Recogn. Lett. 31 651

    [29]

    May R M 1976 Nature 261 459

    [30]

    Hnon M 1976 Commun. Math. Phys. 50 69

    [31]

    Zhang Y P, Sun W H, Liu C A 2010 Chin. Phys. B 19 050512

  • [1] 张洪宾, 孙小端, 贺玉龙. 短时交通流复杂动力学特性分析及预测. 物理学报, 2014, 63(4): 040505. doi: 10.7498/aps.63.040505
    [2] 张文超, 谭思超, 高璞珍. 基于Lyapunov指数的摇摆条件下自然循环流动不稳定性混沌预测. 物理学报, 2013, 62(6): 060502. doi: 10.7498/aps.62.060502
    [3] 臧鸿雁, 范修斌, 闵乐泉, 韩丹丹. S-盒的Lyapunov指数研究. 物理学报, 2012, 61(20): 200508. doi: 10.7498/aps.61.200508
    [4] 姚天亮, 刘海峰, 许建良, 李伟锋. 空气湍射流速度时间序列的最大Lyapunov指数以及湍流脉动. 物理学报, 2012, 61(23): 234704. doi: 10.7498/aps.61.234704
    [5] 姚天亮, 刘海峰, 许建良, 李伟锋. 基于最大Lyapunov指数不变性的混沌时间序列噪声水平估计. 物理学报, 2012, 61(6): 060503. doi: 10.7498/aps.61.060503
    [6] 杨永锋, 吴亚锋, 任兴民, 裘焱. 随机噪声对经验模态分解非线性信号的影响. 物理学报, 2010, 59(6): 3778-3784. doi: 10.7498/aps.59.3778
    [7] 张晓丹, 刘翔, 赵品栋. 一类延迟混沌系统沿主轴方向上Lyapunov指数的计算方法. 物理学报, 2009, 58(7): 4415-4420. doi: 10.7498/aps.58.4415
    [8] 张勇, 关伟. 基于最大Lyapunov指数的多变量混沌时间序列预测. 物理学报, 2009, 58(2): 756-763. doi: 10.7498/aps.58.756
    [9] 杨永锋, 吴亚锋, 任兴民, 秦卫阳, 支希哲, 裘焱. 基于最大Lyapunov指数预测的EMD端点延拓. 物理学报, 2009, 58(6): 3742-3746. doi: 10.7498/aps.58.3742
    [10] 何四华, 杨绍清, 石爱国, 李天伟. 基于图像区域Lyapunov指数的海面舰船目标检测. 物理学报, 2009, 58(2): 794-801. doi: 10.7498/aps.58.794
    [11] 王兴元, 贺毅杰. 分数阶统一混沌系统的投影同步. 物理学报, 2008, 57(3): 1485-1492. doi: 10.7498/aps.57.1485
    [12] 牛玉俊, 徐 伟, 戎海武, 王 亮, 冯进钤. 非光滑周期扰动与有界噪声联合作用下受迫Duffing系统的混沌预测. 物理学报, 2008, 57(12): 7535-7540. doi: 10.7498/aps.57.7535
    [13] 刘福才, 孙立萍, 梁晓明. 基于递阶模糊聚类的混沌时间序列预测. 物理学报, 2006, 55(7): 3302-3306. doi: 10.7498/aps.55.3302
    [14] 杨晓丽, 徐 伟, 孙中奎. 谐和激励与有界噪声作用下具有同宿和异宿轨道的Duffing振子的混沌运动. 物理学报, 2006, 55(4): 1678-1686. doi: 10.7498/aps.55.1678
    [15] 李 爽, 徐 伟, 李瑞红. 利用随机相位实现Duffing系统的混沌控制. 物理学报, 2006, 55(3): 1049-1054. doi: 10.7498/aps.55.1049
    [16] 陶朝海, 陆君安. 混沌系统的速度反馈同步. 物理学报, 2005, 54(11): 5058-5061. doi: 10.7498/aps.54.5058
    [17] 陶朝海, 陆君安, 吕金虎. 统一混沌系统的反馈同步. 物理学报, 2002, 51(7): 1497-1501. doi: 10.7498/aps.51.1497
    [18] 谢勇, 徐健学, 杨红军, 胡三觉. 皮层脑电时间序列的相空间重构及非线性特征量的提取. 物理学报, 2002, 51(2): 205-214. doi: 10.7498/aps.51.205
    [19] 刘海峰, 赵艳艳, 代正华, 龚欣, 于遵宏. 利用小波分析计算离散动力系统的最大Lyapunov指数. 物理学报, 2001, 50(12): 2311-2317. doi: 10.7498/aps.50.2311
    [20] 史朋亮, 胡 岗, 徐莉梅. 耦合映像系统的最大Lyapunov指数 . 物理学报, 2000, 49(1): 24-29. doi: 10.7498/aps.49.24
计量
  • 文章访问数:  7238
  • PDF下载量:  441
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-03
  • 修回日期:  2015-10-16
  • 刊出日期:  2016-01-20

/

返回文章
返回