搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光间接驱动球形腔新型光路排布方案

侯鹏程 钟哲强 文萍 张彬

引用本文:
Citation:

激光间接驱动球形腔新型光路排布方案

侯鹏程, 钟哲强, 文萍, 张彬

A novel arrangement scheme of laser quads for spherical hohlraum in laser indirect-driven facility

Hou Peng-Cheng, Zhong Zhe-Qiang, Wen Ping, Zhang Bin
PDF
导出引用
  • 针对激光间接驱动装置中的六端注入球形靶腔结构, 提出了新型光路排布方案, 即单端集束分两环注入(内环注入角度为35、外环注入角度为55). 为了对激光集束在球形腔壁上的辐照特性进行评价, 提出了利用光通量对比度和FOPAI来评价单集束在球腔壁上光斑的均匀性, 以及利用离散度和占空比来评价全部集束在球腔壁上光斑分布的均匀性. 结果表明, 新型光路排布方案与传统光路排布方案相比, 集束在腔壁上的辐照特性保持一致, 不仅可缓解在激光注入孔处的堵孔问题, 而且还可避免传统光路排布方案中集束以小角度入射时在腔内传输所导致的复杂交叉重叠问题. 新型光路排布方案可为球形腔结构在激光间接驱动装置中的方案设计提供有用参考.
    In traditional laser quads arrangement schemes for spherical hohlraum in indirect-driven laser facilities, the laser quads to bring about the laser entrance hole (LEH) to close when they are incident at a large angle (55), while the complicated cross and overlap of laser quads inside the spherical hohlraum may be generated when they are incident at a small angle (35). To overcome these problems, a novel laser quads arrangement scheme for spherical hohlraum is proposed. The laser quads injected into the single LEH are divided into two cones (the incident angle of the inner cone is 35, and that of the outer cone is 55). Furthermore, the contrast and the fractional power above the intensity have been proposed to evaluate the irradiation uniformity of single laser quad, while the dispersion degree and the duty ratio are proposed to evaluate the distribution uniformity of all laser quads on the spherical hohlraum wall. Based on the beam smoothing scheme implemented by the combination of one-dimensional smoothing by spectral dispersion, the continuous phase plate and polarization control plate, the propagation model of laser quads in the spherical hohlraum has been built up, and further used to analyze the irradiation uniformity of single laser quad and all the laser quads on the spherical hohlraum wall. On this basis, the irradiation characteristics on the LEHs and the spherical hohlraum wall, and the propagation characteristic of laser quads in the novel and traditional laser quads arrangement schemes have been analyzed and compared. Results indicate that, compared with the traditional arrangement scheme of laser quads, the novel laser quads arrangement scheme has following advantages: The irradiation uniformity on the spherical hohlraum wall of single laser quad and all laser quads remains unchanged. Not only the LEH closure problem can be alleviated, but also the complicated cross and overlap of laser quads inside the spherical hohlraum in the traditional scheme could be avoided. The novel scheme may provide useful reference for the design of spherical hohlraum structure in laser indirect-driven facilities due to its obvious advantages over the traditional scheme.
      通信作者: 张彬, zhangbinff@sohu.com
    • 基金项目: 国家重大专项应用基础项目(批准号: JG2013102)、四川省教育厅创新团队计划项目(批准号: 13Td0048)和四川大学优秀青年学者计划(批准号: 2011-2-B17) 资助的课题.
      Corresponding author: Zhang Bin, zhangbinff@sohu.com
    • Funds: Project supported by the Special Foundation for State Major Basic Research Program of China (Grant No. JG2013102), the Scientific Research Foundation of the Education Department of Sichuan Province, China (Grant No. 13Td0048), and the Research Award Fund for Outstanding Young Teachers in Higher Education Institutions, China (Grant No. 2011-2-B17).
    [1]

    Yang C L, Zhang R Z, Xu Q, Ma P 2008 Appl. Opt. 47 1465

    [2]

    Skupsky S, Short R W, Kessler T, Craxton R S, Letzring S, Soures J M 1989 J. Appl. Phys. 66 3456

    [3]

    Dixit S N, Lawson J K, Manes K R, Powell H T 1994 Opt. lett. 19 417

    [4]

    Fu S Z, Sun Y Q, Huang X G, Wu J, Zhou G L, Gu Y 2003 Chinese Journal of Lasers 30 129 (in Chinese) [傅思祖, 孙玉琴, 黄秀光, 吴江, 周关林, 顾援 2003 中国激光 30 129]

    [5]

    Nagel S R, Haan S W, Rygg J R, Barrios M, Benedetti L R, Bradley D K, Field J E, Hammel B A, Izumi N, Jones O S, Khan S F, Ma T, Pak A E, Tommasini R, Town R P J 2015 Phys. Plasmas 22 022704

    [6]

    Cheng N B, Li F Q, Feng B, Jia H T, Xiang Y, Wei X F 2015 Chinese Journal of Lasers. 42 0202005 (in Chinese) [程宁波, 李富全, 冯斌, 贾怀庭, 向勇, 魏晓峰 2015 中国激光 42 0202005]

    [7]

    Zhang R 2006 Ph. D. Dissertation(Mianyang: China Academy of Engineering Physics) (in Chinese) [张锐 2006 博士学位论文 (绵阳: 中国工程物理研究院)]

    [8]

    Wang M C, Zhu M Z, Chen G, Wu W K, Fu X N 2013 Laser Optoelectron. Prog. 50 011403 (in Chinese) [王美聪, 朱明智, 陈刚, 吴文凯, 傅学农 2013 激光与光电子学进展 50 011403]

    [9]

    Li H, Pu Y D, Jing L F, Lin Z W, Chen B L, Jiang W, Zhou J Y, Huang T X, Zhang H Y, Yu R Z, Zhang J Y, Miao W Y, Zheng Z J, Cao Z R, Yang J M, Liu S Y, Jiang S E, Ding Y K, Kuang L Y, Hu G Y, Zheng J 2013 Acta Phys. Sin. 62 225204 (in Chinese) [黎航, 蒲昱东, 景龙飞, 林雉伟, 陈伯伦, 蒋炜, 周近宇, 黄天晅, 张海鹰, 于瑞珍, 张继彦, 缪文勇, 郑志坚, 曹柱荣, 杨家敏, 刘慎业, 江少恩, 丁永坤, 况龙钰, 胡广月, 郑坚 2013 物理学报 62 225204]

    [10]

    Moody J D, Michel P, Divol L, Berger R L, Bond E, Bradley D K, Callahan D. A, Dewald E L, Dixit S, Edwards M J, Glenn S, Hamza A, Haynam C, Hinkel D E, Izumi N, Jones O, Kilkenny J D, Kirkwood R K, Kline J L, Kruer W L, Kyrala G A, Landen O L, Pape S L, Lindl J D, Gowan B J, Meezan N B, Nikroo A, Rosen M D, Schneider M B, Strozzi D J, Suter L J, Thomas C A, Town R P J, Widmann K, Williams E A, Atherton L J, Glenzer S H, Moses E I 2012 Nat. Phys. 8 334

    [11]

    Zhong Z Q, Zhou B J, Ye R, Zhang B 2014 Acta Phys. Sin. 63 035201 (in Chinese) [钟哲强, 周冰结, 叶荣, 张彬 2014 物理学报 63 035201]

    [12]

    Fan X M, Lv Z W, Lin D Y, Wang Y L 2013 Chin. Phys. B 22 104210

    [13]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Siegfried H G, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [14]

    Lan K, He X T, Liu J 2014 Phys. Plasmas 21 052704

    [15]

    Lan K, Zheng W D 2014 Phys. Plasmas 21 090704

    [16]

    Lan K, Liu J, Lai D 2014 Phys. Plasmas 21 010704

    [17]

    Michel P, Divol L, Williams E A, Thomas C A, Callahan D A, Weber S, Haan S W, Salmonson J D, Meezan N B, Landen O L, Dixit S, Hinkel D E, Edwards M J, MacGowan B J, Lindl J D, Glenzer S H, Suter L J 2009 Phys. Plasmas 16 042702

    [18]

    Feng Y J, Wang Z 2015 Laser Optoelectron. Prog. 52 072204 (inChinese) [冯友君, 王忠 2015 激光与光电子学进展 52 072204]

    [19]

    Zhang R, Su J Q, Hu D X, Ping L, Yuan H Y, Zhou W, Yuan Q, Wang Y C, Tian X C, Xu D P, Dong J, Zhu Q H 2015 XX International Symposium on High-Power Laser Systems and Applications Chengdu, August 25, 201492554B-1

    [20]

    Jiang X J, Li J H 2012 Optik-International Journal for Light and Electron Optics 123 1411

    [21]

    Higher Education Press 1979 Mathematics Handbook (Beijing: Higher Education Press) pp789-790 (in Chinese) [(北京: 高等教育出版社) 1979 数学手册 第789-790页]

    [22]

    Wu J D 1985 Coordinate system and coordinate conversion (Wuhan: Hubei Education Press) pp200-230 (in Chinese) [伍家德 1985 坐标系与坐标变换(武汉: 湖北教育出版社) 第200-230页]

    [23]

    L B D 1999 Propagation and control of intense laser (Beijing: National Defence Industry Press) pp3-20 (in Chinese) [吕百达 1999 强激光的传输与控制(北京: 国防工业出版社) 第3-20页]

    [24]

    Zhang B, Lv B D, Xiao J 1998 Acta Phys. Sin 47 1998 (in Chinese) [张彬, 吕百达, 肖俊 1998 物理学报 47 2000]

    [25]

    Haynam C A, Wegner P J, Auerbach J M 2007 App Opt. 46 3276

    [26]

    Kalantar D H 2000 NASA STI/Recon Technical Report N 3 12615

    [27]

    Li J C 2008 Ph. D. Dissertation (Mianyang: China Academy of Engineering Physics) (in Chinese) [李锦灿 2008 博士学位论文 (绵阳: 中国工程物理研究院)]

    [28]

    Michel P, Rozmus W, Williams E A, Divol L, Berger R L, Town R P J, Glenzer S H, Callahan D A 2012 Phys. Rev. Lett. 109 195004

  • [1]

    Yang C L, Zhang R Z, Xu Q, Ma P 2008 Appl. Opt. 47 1465

    [2]

    Skupsky S, Short R W, Kessler T, Craxton R S, Letzring S, Soures J M 1989 J. Appl. Phys. 66 3456

    [3]

    Dixit S N, Lawson J K, Manes K R, Powell H T 1994 Opt. lett. 19 417

    [4]

    Fu S Z, Sun Y Q, Huang X G, Wu J, Zhou G L, Gu Y 2003 Chinese Journal of Lasers 30 129 (in Chinese) [傅思祖, 孙玉琴, 黄秀光, 吴江, 周关林, 顾援 2003 中国激光 30 129]

    [5]

    Nagel S R, Haan S W, Rygg J R, Barrios M, Benedetti L R, Bradley D K, Field J E, Hammel B A, Izumi N, Jones O S, Khan S F, Ma T, Pak A E, Tommasini R, Town R P J 2015 Phys. Plasmas 22 022704

    [6]

    Cheng N B, Li F Q, Feng B, Jia H T, Xiang Y, Wei X F 2015 Chinese Journal of Lasers. 42 0202005 (in Chinese) [程宁波, 李富全, 冯斌, 贾怀庭, 向勇, 魏晓峰 2015 中国激光 42 0202005]

    [7]

    Zhang R 2006 Ph. D. Dissertation(Mianyang: China Academy of Engineering Physics) (in Chinese) [张锐 2006 博士学位论文 (绵阳: 中国工程物理研究院)]

    [8]

    Wang M C, Zhu M Z, Chen G, Wu W K, Fu X N 2013 Laser Optoelectron. Prog. 50 011403 (in Chinese) [王美聪, 朱明智, 陈刚, 吴文凯, 傅学农 2013 激光与光电子学进展 50 011403]

    [9]

    Li H, Pu Y D, Jing L F, Lin Z W, Chen B L, Jiang W, Zhou J Y, Huang T X, Zhang H Y, Yu R Z, Zhang J Y, Miao W Y, Zheng Z J, Cao Z R, Yang J M, Liu S Y, Jiang S E, Ding Y K, Kuang L Y, Hu G Y, Zheng J 2013 Acta Phys. Sin. 62 225204 (in Chinese) [黎航, 蒲昱东, 景龙飞, 林雉伟, 陈伯伦, 蒋炜, 周近宇, 黄天晅, 张海鹰, 于瑞珍, 张继彦, 缪文勇, 郑志坚, 曹柱荣, 杨家敏, 刘慎业, 江少恩, 丁永坤, 况龙钰, 胡广月, 郑坚 2013 物理学报 62 225204]

    [10]

    Moody J D, Michel P, Divol L, Berger R L, Bond E, Bradley D K, Callahan D. A, Dewald E L, Dixit S, Edwards M J, Glenn S, Hamza A, Haynam C, Hinkel D E, Izumi N, Jones O, Kilkenny J D, Kirkwood R K, Kline J L, Kruer W L, Kyrala G A, Landen O L, Pape S L, Lindl J D, Gowan B J, Meezan N B, Nikroo A, Rosen M D, Schneider M B, Strozzi D J, Suter L J, Thomas C A, Town R P J, Widmann K, Williams E A, Atherton L J, Glenzer S H, Moses E I 2012 Nat. Phys. 8 334

    [11]

    Zhong Z Q, Zhou B J, Ye R, Zhang B 2014 Acta Phys. Sin. 63 035201 (in Chinese) [钟哲强, 周冰结, 叶荣, 张彬 2014 物理学报 63 035201]

    [12]

    Fan X M, Lv Z W, Lin D Y, Wang Y L 2013 Chin. Phys. B 22 104210

    [13]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Siegfried H G, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [14]

    Lan K, He X T, Liu J 2014 Phys. Plasmas 21 052704

    [15]

    Lan K, Zheng W D 2014 Phys. Plasmas 21 090704

    [16]

    Lan K, Liu J, Lai D 2014 Phys. Plasmas 21 010704

    [17]

    Michel P, Divol L, Williams E A, Thomas C A, Callahan D A, Weber S, Haan S W, Salmonson J D, Meezan N B, Landen O L, Dixit S, Hinkel D E, Edwards M J, MacGowan B J, Lindl J D, Glenzer S H, Suter L J 2009 Phys. Plasmas 16 042702

    [18]

    Feng Y J, Wang Z 2015 Laser Optoelectron. Prog. 52 072204 (inChinese) [冯友君, 王忠 2015 激光与光电子学进展 52 072204]

    [19]

    Zhang R, Su J Q, Hu D X, Ping L, Yuan H Y, Zhou W, Yuan Q, Wang Y C, Tian X C, Xu D P, Dong J, Zhu Q H 2015 XX International Symposium on High-Power Laser Systems and Applications Chengdu, August 25, 201492554B-1

    [20]

    Jiang X J, Li J H 2012 Optik-International Journal for Light and Electron Optics 123 1411

    [21]

    Higher Education Press 1979 Mathematics Handbook (Beijing: Higher Education Press) pp789-790 (in Chinese) [(北京: 高等教育出版社) 1979 数学手册 第789-790页]

    [22]

    Wu J D 1985 Coordinate system and coordinate conversion (Wuhan: Hubei Education Press) pp200-230 (in Chinese) [伍家德 1985 坐标系与坐标变换(武汉: 湖北教育出版社) 第200-230页]

    [23]

    L B D 1999 Propagation and control of intense laser (Beijing: National Defence Industry Press) pp3-20 (in Chinese) [吕百达 1999 强激光的传输与控制(北京: 国防工业出版社) 第3-20页]

    [24]

    Zhang B, Lv B D, Xiao J 1998 Acta Phys. Sin 47 1998 (in Chinese) [张彬, 吕百达, 肖俊 1998 物理学报 47 2000]

    [25]

    Haynam C A, Wegner P J, Auerbach J M 2007 App Opt. 46 3276

    [26]

    Kalantar D H 2000 NASA STI/Recon Technical Report N 3 12615

    [27]

    Li J C 2008 Ph. D. Dissertation (Mianyang: China Academy of Engineering Physics) (in Chinese) [李锦灿 2008 博士学位论文 (绵阳: 中国工程物理研究院)]

    [28]

    Michel P, Rozmus W, Williams E A, Divol L, Berger R L, Town R P J, Glenzer S H, Callahan D A 2012 Phys. Rev. Lett. 109 195004

  • [1] 徐华锋, 张兴宇, 王仁杰. 部分相干多离轴涡旋矢量光束的传输特性. 物理学报, 2024, 73(3): 034201. doi: 10.7498/aps.73.20231484
    [2] 钟哲强, 张翔, 张彬, 袁孝. 大气湍流和热晕综合效应下旋转光束的传输特性. 物理学报, 2023, 72(6): 064204. doi: 10.7498/aps.72.20221597
    [3] 陈康, 马志远, 张明明, 窦健泰, 胡友友. 部分相干幂指数相位涡旋光束的传输特性研究. 物理学报, 2022, 71(1): 014203. doi: 10.7498/aps.71.20211411
    [4] 王芳, 陈亚珂, 李传强, 马涛, 卢颖慧, 刘恒, 金婵. 非对称银膜多孔硅-氟化钙等离子体波导及其波导灵敏度特性. 物理学报, 2021, 70(22): 224201. doi: 10.7498/aps.70.20210704
    [5] 陈康, 马志远, 张明明, 窦健泰, 胡友友. 部分相干幂指数相位涡旋光束的传输特性研究*. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211411
    [6] 马昊军, 王国林, 罗杰, 刘丽萍, 潘德贤, 张军, 邢英丽, 唐飞. S-Ka频段电磁波在等离子体中传输特性的实验研究. 物理学报, 2018, 67(2): 025201. doi: 10.7498/aps.67.20170845
    [7] 李杨, 朱竹青, 王晓雷, 贡丽萍, 冯少彤, 聂守平. 离轴椭圆矢量光场传输中的光斑演变. 物理学报, 2015, 64(2): 024204. doi: 10.7498/aps.64.024204
    [8] 谭毅, 李新阳. 光束相干合成中填充因子对远场光强分布的影响. 物理学报, 2014, 63(9): 094202. doi: 10.7498/aps.63.094202
    [9] 刘兰琴, 张颖, 耿远超, 王文义, 朱启华, 景峰, 魏晓峰, 黄晚晴. 小宽带光谱色散匀滑光束传输特性研究. 物理学报, 2014, 63(16): 164201. doi: 10.7498/aps.63.164201
    [10] 周建华, 李栋华, 曾阳素, 朱鸿鹏. 梯度负折射率介质中高斯光束传输特性的研究. 物理学报, 2014, 63(10): 104205. doi: 10.7498/aps.63.104205
    [11] 刘明, 徐小峰, 王永良, 曾佳, 李华, 邱阳, 张树林, 张国峰, 孔祥燕, 谢晓明. 超导量子干涉器件读出电路中匹配变压器的传输特性研究. 物理学报, 2013, 62(18): 188501. doi: 10.7498/aps.62.188501
    [12] 苏安, 高英俊. 双重势垒一维光子晶体量子阱的光传输特性研究. 物理学报, 2012, 61(23): 234208. doi: 10.7498/aps.61.234208
    [13] 蒙志君, 王立峰, 吕明云, 武哲. 曲率对有限曲面狭缝阵列传输特性的影响. 物理学报, 2011, 60(1): 017301. doi: 10.7498/aps.60.017301
    [14] 方春易, 张树仁, 卢俊, 汪剑波, 孙连春. 一种圆孔单元厚屏频率选择表面结构的传输特性研究. 物理学报, 2010, 59(7): 5023-5027. doi: 10.7498/aps.59.5023
    [15] 胡玥, 饶海波. 单层有机器件的电子传输特性的数值模拟. 物理学报, 2009, 58(5): 3474-3478. doi: 10.7498/aps.58.3474
    [16] 张永鹏, 刘国治, 邵浩, 杨占峰, 宋志敏, 林郁正. 一维漂移空间内强流电子束的稳态传输特性. 物理学报, 2009, 58(10): 6973-6978. doi: 10.7498/aps.58.6973
    [17] 黄朝军, 刘亚锋, 龙姝明, 孙彦清, 吴振森. 烟尘中电磁波传输特性的Monte Carlo模拟. 物理学报, 2009, 58(4): 2397-2404. doi: 10.7498/aps.58.2397
    [18] 王 涛, 蒲继雄. 部分相干空心光束在湍流介质中的传输特性. 物理学报, 2007, 56(11): 6754-6759. doi: 10.7498/aps.56.6754
    [19] 季小玲, 汤明玥. 一维线阵离轴高斯光束通过湍流大气的传输特性. 物理学报, 2006, 55(9): 4968-4973. doi: 10.7498/aps.55.4968
    [20] 王喜庆, 吕百达. 贝塞耳函数调制的高斯光束通过有光阑ABCD光学系统的传输. 物理学报, 2001, 50(4): 682-685. doi: 10.7498/aps.50.682
计量
  • 文章访问数:  6358
  • PDF下载量:  240
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-30
  • 修回日期:  2015-10-12
  • 刊出日期:  2016-01-20

/

返回文章
返回