搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于包层模谐振的三包层石英特种光纤温度传感特性研究

付兴虎 谢海洋 杨传庆 张顺杨 付广伟 毕卫红

引用本文:
Citation:

基于包层模谐振的三包层石英特种光纤温度传感特性研究

付兴虎, 谢海洋, 杨传庆, 张顺杨, 付广伟, 毕卫红

Research on the temperature sensing characteristics of triple cladding quartz specialty fiber based on cladding mode resonance

Fu Xing-Hu, Xie Hai-Yang, Yang Chuan-Qing, Zhang Shun-Yang, Fu Guang-Wei, Bi Wei-Hong
PDF
导出引用
  • 提出了一种基于包层模谐振的光纤温度传感器. 它是通过将三包层石英特种光纤(TCQSF)两端分别与普通单模光纤(SMF)电弧熔接构成的SMF-TCQSF-SMF结构. 根据耦合模理论, 首先将TCQSF等效为三个同轴波导, 按各波导模场的分布特点标量计算其传输模式的色散曲线, 并深入研究其耦合长度与传输谱线之间的关系; 其次根据光纤的热光效应及热膨胀效应, 分析计算该传感器的温度灵敏度; 最后选取耦合长度为一个拍长时的传感器进行温度传感实验. 实验结果表明, 在35-95 ℃的温度变化范围内, 其温度灵敏度为73.74 pm/℃, 与理论计算结果一致. 因此, 该传感器具有结构简单、制备容易、灵敏度高、包层模激发可控等优点, 可用于工业生产、生物医学等温度传感领域.
    A triple-cladding quartz specialty fiber (TCQSF) temperature sensor based on cladding mode resonance is made. The sensor is fabricated by just splicing a short, few-centimeter-long segment of TCQSF between two standard single-mode fibers (SMFs), so the sensor structure is simple. In order to explain its sensing principle in detail, we assume that the TCQSF is equivalent to three coaxial waveguides based on coupling mode theory. Utilizing the scalar method and the relationship between Bessel function and mode field distribution of step-index circular symmetry waveguide, the mode field distribution of these waveguides and their characteristic equation can be easily obtained. Then the dispersion curves of each mode which is transmitted in the three waveguides can be calculated. The intersection between the fundamental core mode LP01(rod) in the rod waveguide and the cladding mode LP01(tube) in the tube waveguide I indicates that the two modes have the same propagation constant, and satisfy the phase-matching condition when the wavelength is 1563.7 nm which is known the resonant wavelength. And only when the sensor length is equal to the beatlength, can the light be coupled completely from the core to the fluorine-doped silica cladding. Thus, the cladding mode resonance phenomenon occurs and a band-stop filter spectrum will be obtained. Then the sensor is applied to the simulation calculation of the temperature sensing characteristics. With increasing temperature, both the refractive index of each layer and the sizes of the axial and radial fibers will change, which will finally lead to a big difference on the dispersion curves of LP01(rod) and LP01(tube). Therefore, the resonant wavelength shift of the sensor can be obtained by just calculating the dispersion curves of these two modes at different temperatures, and the scope of curvature sensitivity is 70.76-97.36 pm/℃. Finally, a straight forward experiment is performed to prove the temperature sensing properties. Experimental results show that the sensor has a sensitivity in temperature of 73.74 pm/℃ at 35 ℃-95 ℃, which is completely consistent with the theoreticaly calculatied results. Thus, the proposed sensor has the advantages of simple structure, easy fabrication, highly sensitivity, controlled cladding mode excitation, and so on. It can be used in industrial production, biomedical and other temperature sensing areas.
      通信作者: 付兴虎, fuxinghu@ysu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61205068, 61475133), 河北省自然科学基金(批准号: F2015203270), 河北省高等学校青年拔尖人才计划项目(批准号: BJ2014057), 燕山大学 新锐工程人才支持计划, 燕山大学信息学院优秀青年基金(批准号: 2014201) 资助的课题.
      Corresponding author: Fu Xing-Hu, fuxinghu@ysu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61205068, 61475133), the Hebei Provincial Natural Science Foundation, China (Grant No. F2015203270), the College Youth Talent Project of Hebei Province, China (Grant No. BJ2014057), the XinRuiGongCheng Talent Project, and the Excellent Youth Funds for School of Information Science and Engineering, Yanshan University, China (Grant No. 2014201).
    [1]

    Gui X, Hu C C, Xie Y, Li Z Y 2015 Acta Phys. Sin. 64 050704 (in Chinese) [桂鑫, 胡陈晨, 谢莹, 李政颖 2015 物理学报 64 050704]

    [2]

    Chen Y F, Han Q, Liu T G 2015 Chin. Phys. B 24 014214

    [3]

    Zhang Z F, Zhang Y L 2015 Opt. Laser Technol. 74 16

    [4]

    Mas S, Marti J, Palaci J 2015 Opt. Laser Eng. 74 109

    [5]

    Ohira S I, Miki Yusuke, Matsuzaki T, Nakamura N, Sato Y K, Hirose Y, Toda K 2015 Anal. Chim. Acta 886 188

    [6]

    Qin W, Li S G, Xue J R, Xin X J, Zhang L 2013 Chin. Phys. B 22 074213

    [7]

    Shrestha P, Kim J H, Park Y, Kim C G 2015 Compos. Struct. 125 159

    [8]

    Lu Y F, Shen C Y, Zhong C, Chen D B, Dong X Y, Cai J H 2014 IEEE Photon. Technol. Lett. 26 1124

    [9]

    Luo M M, Liu Y G, Wang Z, Han T T, Wu Z F, Guo J Q, Huang W 2013 Opt. Express 21 30911

    [10]

    Felipe B M, Claudecir R B, Cristiano M B C 2014 Opt. Express 22 30432

    [11]

    Han Y, Xia L, Liu D M 2014 Chin. Phys. B 23 104219

    [12]

    Villatoro J, Minkovich V P, Zubia J 2015 Opt. Lett. 40 3113

    [13]

    Pang F F, Xiang W C, Guo H R, Chen N, Zeng X L, Chen Z Y, Wang T Y 2008 Opt. Express 16 12967

    [14]

    Liu H H, Pang F F, Guo H R, Cao W X, Liu Y Q, Chen N, Chen Z Y, Wang T Y 2010 Opt. Express 18 13072

    [15]

    Fu X H, Xie H Y, Zeng X L, Fu G W, Bi W H 2015 Opt. Express 23 2320

    [16]

    Li L J, Lai Y Z, Cao M Y, Liu C, Yuan X M, Zhang X, Guan J P, Shi J, Li J 2013 Acta Phys. Sin 62 140201 (in Chinese) [李丽君, 来永政, 曹茂永, 刘超, 袁雪梅, 张旭, 管金鹏, 史静, 李晶 2013 物理学报 62 140201]

    [17]

    Tsao C Y H, Payne D N, Gambling W A 1989 J. Opt. Soc. Am. A 6 555

    [18]

    Xu Z N, Liu Z J 2010 Acta Photon. Sin. 39 1857

    [19]

    Attridge J W, Cozens J R, Leaver K D, Webster N L 1985 J. Lightwave Technol. 3 1084

    [20]

    Fu X H, Xie H Y, Zhu H B, Fu G W, Bi W H 2015 Acta Opt. Sin. 35 0506002 (in Chinese) [付兴虎, 谢海洋, 朱洪彬, 付广伟, 毕卫红 2015 光学学报 35 0506002]

    [21]

    Koike A, Sugimoto N 2006 Proc. SPIE 6616 61160Y

    [22]

    Coviello G, Finazzi V, Villatoro J, Pruneri V 2009 Opt. Express 24 21551

    [23]

    Jin J, Lin S, Song N F 2012 Chin. Phys. B 21 064221

    [24]

    Gong H P, Song H F, Zhang S L, Jin Y X, Dong X Y 2014 IEEE Sens. J. 14 777

    [25]

    Tripathi S M, Kumar A, Varshney R K, Kumar Y B P, Marin E, Meunier J P 2009 J. Lightwave Technol. 27 2348

    [26]

    Liu Y, Wei L 2007 Appl. Optics 46 2516

    [27]

    Fu H W, Yan X, Li H D, Shao M, Zhao N, Liu Q P, Gao H, Jia Z A, Qiao X G 2014 Acta Opt. Sin. 34 1106001 (in Chinese) [傅海威, 闫旭, 李辉栋, 邵敏, 赵娜, 刘钦朋, 高宏, 贾振安, 乔学光 2014 光学学报 34 1106001]

    [28]

    Ma L, Kang Z X, Qi Y H, Jian S S 2015 Optik 126 1044

  • [1]

    Gui X, Hu C C, Xie Y, Li Z Y 2015 Acta Phys. Sin. 64 050704 (in Chinese) [桂鑫, 胡陈晨, 谢莹, 李政颖 2015 物理学报 64 050704]

    [2]

    Chen Y F, Han Q, Liu T G 2015 Chin. Phys. B 24 014214

    [3]

    Zhang Z F, Zhang Y L 2015 Opt. Laser Technol. 74 16

    [4]

    Mas S, Marti J, Palaci J 2015 Opt. Laser Eng. 74 109

    [5]

    Ohira S I, Miki Yusuke, Matsuzaki T, Nakamura N, Sato Y K, Hirose Y, Toda K 2015 Anal. Chim. Acta 886 188

    [6]

    Qin W, Li S G, Xue J R, Xin X J, Zhang L 2013 Chin. Phys. B 22 074213

    [7]

    Shrestha P, Kim J H, Park Y, Kim C G 2015 Compos. Struct. 125 159

    [8]

    Lu Y F, Shen C Y, Zhong C, Chen D B, Dong X Y, Cai J H 2014 IEEE Photon. Technol. Lett. 26 1124

    [9]

    Luo M M, Liu Y G, Wang Z, Han T T, Wu Z F, Guo J Q, Huang W 2013 Opt. Express 21 30911

    [10]

    Felipe B M, Claudecir R B, Cristiano M B C 2014 Opt. Express 22 30432

    [11]

    Han Y, Xia L, Liu D M 2014 Chin. Phys. B 23 104219

    [12]

    Villatoro J, Minkovich V P, Zubia J 2015 Opt. Lett. 40 3113

    [13]

    Pang F F, Xiang W C, Guo H R, Chen N, Zeng X L, Chen Z Y, Wang T Y 2008 Opt. Express 16 12967

    [14]

    Liu H H, Pang F F, Guo H R, Cao W X, Liu Y Q, Chen N, Chen Z Y, Wang T Y 2010 Opt. Express 18 13072

    [15]

    Fu X H, Xie H Y, Zeng X L, Fu G W, Bi W H 2015 Opt. Express 23 2320

    [16]

    Li L J, Lai Y Z, Cao M Y, Liu C, Yuan X M, Zhang X, Guan J P, Shi J, Li J 2013 Acta Phys. Sin 62 140201 (in Chinese) [李丽君, 来永政, 曹茂永, 刘超, 袁雪梅, 张旭, 管金鹏, 史静, 李晶 2013 物理学报 62 140201]

    [17]

    Tsao C Y H, Payne D N, Gambling W A 1989 J. Opt. Soc. Am. A 6 555

    [18]

    Xu Z N, Liu Z J 2010 Acta Photon. Sin. 39 1857

    [19]

    Attridge J W, Cozens J R, Leaver K D, Webster N L 1985 J. Lightwave Technol. 3 1084

    [20]

    Fu X H, Xie H Y, Zhu H B, Fu G W, Bi W H 2015 Acta Opt. Sin. 35 0506002 (in Chinese) [付兴虎, 谢海洋, 朱洪彬, 付广伟, 毕卫红 2015 光学学报 35 0506002]

    [21]

    Koike A, Sugimoto N 2006 Proc. SPIE 6616 61160Y

    [22]

    Coviello G, Finazzi V, Villatoro J, Pruneri V 2009 Opt. Express 24 21551

    [23]

    Jin J, Lin S, Song N F 2012 Chin. Phys. B 21 064221

    [24]

    Gong H P, Song H F, Zhang S L, Jin Y X, Dong X Y 2014 IEEE Sens. J. 14 777

    [25]

    Tripathi S M, Kumar A, Varshney R K, Kumar Y B P, Marin E, Meunier J P 2009 J. Lightwave Technol. 27 2348

    [26]

    Liu Y, Wei L 2007 Appl. Optics 46 2516

    [27]

    Fu H W, Yan X, Li H D, Shao M, Zhao N, Liu Q P, Gao H, Jia Z A, Qiao X G 2014 Acta Opt. Sin. 34 1106001 (in Chinese) [傅海威, 闫旭, 李辉栋, 邵敏, 赵娜, 刘钦朋, 高宏, 贾振安, 乔学光 2014 光学学报 34 1106001]

    [28]

    Ma L, Kang Z X, Qi Y H, Jian S S 2015 Optik 126 1044

  • [1] 惠战强, 高黎明, 刘瑞华, 韩冬冬, 汪伟. 低损耗大带宽双芯负曲率太赫兹光纤偏振分束器. 物理学报, 2022, 71(4): 048702. doi: 10.7498/aps.71.20211650
    [2] 李朝刚, 汪茂胜, 方泉, 彭雪城, 黄万霞. 表象变换和久期微扰理论在耦合杜芬方程中的应用. 物理学报, 2021, 70(2): 024601. doi: 10.7498/aps.70.20201057
    [3] 惠战强. 低损耗大带宽双芯负曲率太赫兹光纤偏振分束器. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211650
    [4] 祁云平, 张婷, 郭嘉, 张宝和, 王向贤. 基于乙醇密封共振腔金属-介质-金属波导的高性能温度和折射率两用传感器. 物理学报, 2020, 69(16): 167301. doi: 10.7498/aps.69.20200405
    [5] 刘旭阳, 张贺秋, 李冰冰, 刘俊, 薛东阳, 王恒山, 梁红伟, 夏晓川. AlGaN/GaN高电子迁移率晶体管温度传感器特性. 物理学报, 2020, 69(4): 047201. doi: 10.7498/aps.69.20190640
    [6] 朱存远, 李朝刚, 方泉, 汪茂胜, 彭雪城, 黄万霞. 用久期微扰理论将弹簧振子模型退化为耦合模理论. 物理学报, 2020, 69(7): 074501. doi: 10.7498/aps.69.20191505
    [7] 李自亮, 廖常锐, 刘申, 王义平. 光纤法布里-珀罗干涉温度压力传感技术研究进展. 物理学报, 2017, 66(7): 070708. doi: 10.7498/aps.66.070708
    [8] 杨杰, 刘清惓, 戴伟, 冒晓莉, 张加宏, 李敏. 用于气象观测的阵列式温度传感器流体动力学分析与实验研究. 物理学报, 2016, 65(9): 094209. doi: 10.7498/aps.65.094209
    [9] 李欣, 王禄娜, 郭士亮, 李志全, 杨明. 温度测量范围加倍的单微环传感器. 物理学报, 2014, 63(15): 154209. doi: 10.7498/aps.63.154209
    [10] 沈文渊, 王虎, 耿志辉, 杜朝海, 刘濮鲲. 基于波导模式变换的圆波导TE62模式激励器的研究. 物理学报, 2013, 62(23): 238403. doi: 10.7498/aps.62.238403
    [11] 王虎, 沈文渊, 耿志辉, 徐寿喜, 王斌, 杜朝海, 刘濮鲲. 高功率回旋振荡管Denisov型辐射器的研究. 物理学报, 2013, 62(23): 238401. doi: 10.7498/aps.62.238401
    [12] 裴丽, 赵瑞峰. 统一非对称光波导横向耦合模理论分析. 物理学报, 2013, 62(18): 184213. doi: 10.7498/aps.62.184213
    [13] 李鹏, 赵建林, 张晓娟, 侯建平. 三角结构三芯光子晶体光纤中的模式耦合特性分析. 物理学报, 2010, 59(12): 8625-8631. doi: 10.7498/aps.59.8625
    [14] 宋有建, 胡明列, 刘庆文, 李进延, 陈 伟, 柴 路, 王清月. 掺Yb3+双包层大模场面积光纤锁模激光器. 物理学报, 2008, 57(8): 5045-5048. doi: 10.7498/aps.57.5045
    [15] 於陆勒, 盛政明, 张 杰. 均匀等离子体光栅的色散特性研究. 物理学报, 2008, 57(10): 6457-6464. doi: 10.7498/aps.57.6457
    [16] 王燕花, 任文华, 刘 艳, 谭中伟, 简水生. 相位修正的耦合模理论用于计算光纤Bragg光栅法布里-珀罗腔透射谱. 物理学报, 2008, 57(10): 6393-6399. doi: 10.7498/aps.57.6393
    [17] 周晓军, 杜 东, 龚俊杰. 偏振模耦合分布式光纤传感器空间分辨率研究. 物理学报, 2005, 54(5): 2106-2110. doi: 10.7498/aps.54.2106
    [18] 王目光, 魏 淮, 简水生. 复合型双周期光纤光栅的理论与实验研究. 物理学报, 2003, 52(3): 609-614. doi: 10.7498/aps.52.609
    [19] 王义平, 饶云江, 冉曾令, 朱 涛. 高频CO2激光脉冲写入的长周期光纤光栅传感器的特性研究. 物理学报, 2003, 52(6): 1432-1437. doi: 10.7498/aps.52.1432
    [20] 李松茂, 王奇, 吴中, 卫青. Kerr类非线性介质周期结构中的慢Bragg孤子. 物理学报, 2001, 50(3): 489-495. doi: 10.7498/aps.50.489
计量
  • 文章访问数:  5598
  • PDF下载量:  368
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-06
  • 修回日期:  2015-09-28
  • 刊出日期:  2016-01-20

/

返回文章
返回