搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Helmholtz水声换能器弹性壁液腔谐振频率研究

桑永杰 蓝宇 丁玥文

引用本文:
Citation:

Helmholtz水声换能器弹性壁液腔谐振频率研究

桑永杰, 蓝宇, 丁玥文

Study on elastic-wall fluid cavity resonant frequency of Helmholtz underwater acoustic transducer

Sang Yong-Jie, Lan Yu, Ding Yue-Wen
PDF
导出引用
  • 针对传统Helmholtz水声换能器设计中刚性壁假设的局限性, 将Helmholtz腔体的弹性计入到液腔谐振频率计算中, 实现低频弹性Helmholtz水声换能器液腔谐振频率精确设计. 基于细长圆柱壳腔体的低频集中参数模型, 导出了腔体弹性引入的附加声阻抗表达式, 得到了弹性壁条件下Helmholtz水声换能器等效电路图, 给出了考虑了末端修正的弹性壁Helmholtz共振腔液腔谐振频率计算公式. 利用ANSYS软件建立了算例模型, 仿真分析了不同材质、半径、长度时的Helmholtz共振腔液腔谐振频率. 结果对比表明弹性理论值与仿真值符合得很好, 相比起传统的刚性壁理论计算结果, 本文的弹性壁理论得出的液腔谐振频率值有所降低, 与真实情况更加接近. 本文的结论可以为精确设计低频弹性Helmholtz水声换能器提供理论支持.
    Helmholtz resonators are commonly used as underwater acoustic transducers to transmit low-frequency, great power acoustic waves at fluid cavity resonant frequency. Therefore, it is an important problem in the study of how to calculate accurately the fluid cavity resonant frequency of Helmholtz resonator, especially when the Helmholtz resonator is used in underwater acoustic environment where Helmholtz transducers cannot be designed using the classical air acoustic Helmholtz resonator theory. The elasticity of the cavity wall has to be considered because it has a strong influence on the fluid cavity resonant frequency at low frequency band. In this paper, the method of calculating accurately fluid cavity resonant frequency is researched for low-frequency Helmholtz underwater transducers. A Helmholtz resonator is a slender cylindrical shell, the boundary condition of its two ends is free: one side is a radiating port, and the other side is considered as a rigid baffle. Firstly, the fluid cavity resonant frequency of the rigid wall Helmholtz resonator is given, then the radial mechanical impedance of the slender cylindrical shell is derived based on the wave equations. Elasticity of the cavity wall is introduced into the acoustic impedance of fluid cavity in the form of additional impedance. Based on the low-frequency lumped parameter model of the slender cylindrical shell, additional acoustic impedance expression of elastic cavity wall is derived, complete equivalent circuit diagram of elastic Helmholtz underwater transducers is developed, taking into account the elasticity of the cavity wall. Based on the equivalent circuit, the accurate fluid cavity resonant frequency formula has been derived; the formula shows that both the structure size and material characteristics of the cavity wall have influence on the fluid cavity resonant frequency. The thinner the cavity wall, the lower the fluild cavity resonant frequency; and the smaller the Young's modulus of the material, the lower the fluild cavity resonant frequency. To verify the accuracy of the present theory, several slender cylindrical shell models with different wall thickness, materials, and wall length are investigated by both elastic theory method and finite element method (using ANSYS software). These results reveal that the elastic theory results are in excellent agreement with the finite element simulation results. That means, compared to traditional rigid wall theory results, the results from elastic theory in this paper is much closer to the real situation. This conclusion can provide a theoretical support for the accurate design of low-frequency elastic Helmholtz underwater acoustic transducers.
      通信作者: 蓝宇, sangyongjie@126.com
    • 基金项目: 国家自然科学基金(批准号: 11304057)资助的课题.
      Corresponding author: Lan Yu, sangyongjie@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11304057).
    [1]

    Marsset T, Marsset B, Ker S, Thomas Y, Le Gall Y 2010 Deep Sea Res. Part I 57 628

    [2]

    Mosca F, Matte G, Shimura T 2013 J. Acoust. Soc. Am. 133 EL61

    [3]

    Morozov A K, Webb D C 2003 Ocean Eng. 28 174

    [4]

    Ker S, Marsset B, Garziglia S, Le Gonidec Y, Gibert D, Voisset M, Adamy J 2010 Geophys. J. Int. 182 1524

    [5]

    Butler J L, Butler A L 1999 J. Acoust. Soc. Am. 105 1119

    [6]

    Morozov A K, Webb D C 2007 J. Acoust. Soc. Am. 122 777

    [7]

    Rossby T, Ellis J, Webb D C 1993 J. Atmos. Oceanic Technol. 10 397

    [8]

    Norris A N, Wickham G 1993 J. Acoust. Soc. Am. 93 617

    [9]

    He S P, Tang W L, Liu T, Fan J 2003 J. Ship. Mech. 7 97 (in Chinese) [何世平, 汤渭霖, 刘涛, 范军 2003 船舶力学 7 97]

    [10]

    Liu T, Fan J, Tang W L 2002 Acta Acustica 27 62 (in Chinese) [刘涛, 范军, 汤渭霖 2002 声学学报 27 62]

    [11]

    Tang W L, Fan J 2004 Acta Acustica 29 385 (in Chinese) [汤渭霖, 范军 2004 声学学报 29 385]

    [12]

    Wang Z F, Hu Y M 2008 Acta Acustica 33 184 (in Chinese) [王泽锋, 胡永明 2008 声学学报 33 184]

    [13]

    Wang Z F, Hu Y M, Meng Z, Ni M 2008 Acta Phys. Sin. 57 7022 (in Chinese) [王泽锋, 胡永明, 孟洲, 倪明 2008 物理学报 57 7022]

    [14]

    Wang Z F, Hu Y M, Xiong S D, Luo H, Meng Z, Ni M 2009 Acta Phys. Sin. 58 2507 (in Chinese) [王泽锋, 胡永明, 熊水东, 罗洪, 孟洲, 倪明 2009 物理学报 58 2507]

    [15]

    Zhou C G, Liu B L, Li X D, Tian J 2007 Acta Acoustic 32 426 (in Chinese) [周城光, 刘碧龙, 李晓东, 田静 2007 声学学报 32 426]

    [16]

    Sherman C H, Butler J L 2007 Transducers and arrays for underwater sound (New York: Springer) p92

  • [1]

    Marsset T, Marsset B, Ker S, Thomas Y, Le Gall Y 2010 Deep Sea Res. Part I 57 628

    [2]

    Mosca F, Matte G, Shimura T 2013 J. Acoust. Soc. Am. 133 EL61

    [3]

    Morozov A K, Webb D C 2003 Ocean Eng. 28 174

    [4]

    Ker S, Marsset B, Garziglia S, Le Gonidec Y, Gibert D, Voisset M, Adamy J 2010 Geophys. J. Int. 182 1524

    [5]

    Butler J L, Butler A L 1999 J. Acoust. Soc. Am. 105 1119

    [6]

    Morozov A K, Webb D C 2007 J. Acoust. Soc. Am. 122 777

    [7]

    Rossby T, Ellis J, Webb D C 1993 J. Atmos. Oceanic Technol. 10 397

    [8]

    Norris A N, Wickham G 1993 J. Acoust. Soc. Am. 93 617

    [9]

    He S P, Tang W L, Liu T, Fan J 2003 J. Ship. Mech. 7 97 (in Chinese) [何世平, 汤渭霖, 刘涛, 范军 2003 船舶力学 7 97]

    [10]

    Liu T, Fan J, Tang W L 2002 Acta Acustica 27 62 (in Chinese) [刘涛, 范军, 汤渭霖 2002 声学学报 27 62]

    [11]

    Tang W L, Fan J 2004 Acta Acustica 29 385 (in Chinese) [汤渭霖, 范军 2004 声学学报 29 385]

    [12]

    Wang Z F, Hu Y M 2008 Acta Acustica 33 184 (in Chinese) [王泽锋, 胡永明 2008 声学学报 33 184]

    [13]

    Wang Z F, Hu Y M, Meng Z, Ni M 2008 Acta Phys. Sin. 57 7022 (in Chinese) [王泽锋, 胡永明, 孟洲, 倪明 2008 物理学报 57 7022]

    [14]

    Wang Z F, Hu Y M, Xiong S D, Luo H, Meng Z, Ni M 2009 Acta Phys. Sin. 58 2507 (in Chinese) [王泽锋, 胡永明, 熊水东, 罗洪, 孟洲, 倪明 2009 物理学报 58 2507]

    [15]

    Zhou C G, Liu B L, Li X D, Tian J 2007 Acta Acoustic 32 426 (in Chinese) [周城光, 刘碧龙, 李晓东, 田静 2007 声学学报 32 426]

    [16]

    Sherman C H, Butler J L 2007 Transducers and arrays for underwater sound (New York: Springer) p92

  • [1] 谢冰鸿, 徐国凯, 雷保新, 肖绍球, 喻忠军, 朱大立. 谐振型自偏置磁电换能器的建模与性能研究. 物理学报, 2024, 73(14): 147502. doi: 10.7498/aps.73.20240615
    [2] 高荣, 杨亚楠, 湛晨翌, 张宗祯, 邓宜, 王子潇, 梁坤, 冯素春. 基于双频泵浦正常色散碳化硅微环谐振腔的光频率梳设计. 物理学报, 2024, 73(3): 034203. doi: 10.7498/aps.73.20231442
    [3] 贾静, 肖勇, 王勋年, 王帅星, 温激鸿. 内插缝Helmholtz共振腔吸声超结构的机理分析与优化设计. 物理学报, 2024, 73(11): 114301. doi: 10.7498/aps.73.20240250
    [4] 张羿双, 桑永杰, 陈永耀, 吴帅. Janus-Helmholtz换能器的振动模态谐振频率理论分析研究. 物理学报, 2024, 73(3): 034303. doi: 10.7498/aps.73.20231251
    [5] 李婷, 吴丰民, 张同涛, 王军军, 杨彬, 章东. 基于嵌入式粗糙颈亥姆霍兹共振器的低频宽带通风消声器. 物理学报, 2023, 72(22): 224301. doi: 10.7498/aps.72.20231047
    [6] 王雅君, 王俊萍, 张文慧, 李瑞鑫, 田龙, 郑耀辉. 光学谐振腔的传输特性. 物理学报, 2021, 70(20): 204202. doi: 10.7498/aps.70.20210234
    [7] 贺子厚, 赵静波, 姚宏, 陈鑫. 薄膜底面Helmholtz腔声学超材料的隔声性能. 物理学报, 2019, 68(21): 214302. doi: 10.7498/aps.68.20191131
    [8] 陈鑫, 姚宏, 赵静波, 张帅, 贺子厚, 蒋娟娜. 薄膜与Helmholtz腔耦合结构低频带隙. 物理学报, 2019, 68(21): 214208. doi: 10.7498/aps.68.20190673
    [9] 宋丽军, 张鹏飞, 王鑫, 王晨曦, 李刚, 张天才. 光纤环形谐振腔的频率锁定及其特性. 物理学报, 2019, 68(7): 074204. doi: 10.7498/aps.68.20182296
    [10] 陈鑫, 姚宏, 赵静波, 张帅, 贺子厚, 蒋娟娜. Helmholtz腔与弹性振子耦合结构带隙. 物理学报, 2019, 68(8): 084302. doi: 10.7498/aps.68.20182102
    [11] 种涛, 王桂吉, 谭福利, 赵剑衡, 唐志平. 窗口声阻抗对锆相变动力学的影响. 物理学报, 2018, 67(7): 070204. doi: 10.7498/aps.67.20172198
    [12] 谭巍, 邱晓东, 赵刚, 侯佳佳, 贾梦源, 闫晓娟, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂. 高效频率转换下双波长外腔共振和频技术研究. 物理学报, 2016, 65(7): 074202. doi: 10.7498/aps.65.074202
    [13] 闫晓娟, 马维光, 谭巍. 外腔共振和频系统中阻抗匹配的理论研究. 物理学报, 2016, 65(4): 044207. doi: 10.7498/aps.65.044207
    [14] 李培, 王辅忠, 张丽珠, 张光璐. 左手介质对谐振腔谐振频率的影响. 物理学报, 2015, 64(12): 124103. doi: 10.7498/aps.64.124103
    [15] 杜金锦, 李文芳, 文瑞娟, 李刚, 张天才. 超高精细度微光学腔共振频率及有效腔长的精密测量. 物理学报, 2013, 62(19): 194203. doi: 10.7498/aps.62.194203
    [16] 王争, 赵新杰, 何明, 周铁戈, 岳宏卫, 阎少林. 嵌入到Fabry-Perot谐振腔的双晶约瑟夫森结阵列的阻抗匹配和相位锁定研究. 物理学报, 2010, 59(5): 3481-3487. doi: 10.7498/aps.59.3481
    [17] 赵研英, 韩海年, 滕浩, 魏志义. 采用多通腔望远镜谐振腔结构的10MHz重复频率飞秒钛宝石激光器特性研究. 物理学报, 2009, 58(3): 1709-1714. doi: 10.7498/aps.58.1709
    [18] 毛义军, 祁大同. 开口/封闭薄壳体声辐射和散射的统一边界积分方程解法. 物理学报, 2009, 58(10): 6764-6769. doi: 10.7498/aps.58.6764
    [19] 方洪烈. 多元件谐振腔的正则描述. 物理学报, 1979, 28(3): 430-434. doi: 10.7498/aps.28.430
    [20] 王之江, 方洪烈. 直角稜镜谐振腔的共振模. 物理学报, 1975, 24(6): 454-457. doi: 10.7498/aps.24.454
计量
  • 文章访问数:  8019
  • PDF下载量:  540
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-08
  • 修回日期:  2015-09-12
  • 刊出日期:  2016-01-20

/

返回文章
返回