搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mdm2生成速率调控的p53-Mdm2振子的全局动力学和稳定性

毕远宏 杨卓琴 何小燕

引用本文:
Citation:

Mdm2生成速率调控的p53-Mdm2振子的全局动力学和稳定性

毕远宏, 杨卓琴, 何小燕

Global dynamics and stability of p53-Mdm2 oscillator mediated by Mdm2 production rate

Bi Yuan-Hong, Yang Zhuo-Qin, He Xiao-Yan
PDF
导出引用
  • 肿瘤抑制蛋白p53的动力学在一定程度上可以决定DNA损伤后的细胞命运. p53 的动力学行为 与p53信号通路中p53-Mdm2振子模块密切相关. 然而, p53的负调控子Mdm2 的生成速率的增加使其在一些癌细胞中过表达. 因此探讨Mdm2生成速率对p53动力学的影响有重要意义. 同时, PDCD5作为p53的激活子也调控p53的表达. 因此, 本文针对PDCD5调控的p53-Mdm2 振子模型, 通过分岔分析获得了Mdm2生成速率所调控的p53的单稳态、振荡以及单稳态与振荡共存的动力学行为, 且稳定性通过能量面进行了分析. 此外, 噪声强度对p53动力学的稳定性有重要的影响. 因此, 针对p53的振荡行为, 探讨了噪声强度对势垒高度和周期的影响. 本文所获得的结果对理解DNA损伤后的p53信号通路调控起到一定的指导作用.
    Studying global dynamics and stability of biological network is of importance in order to understand its function and behavior. In this paper, we consider the p53-Mdm2 oscillator module with PDCD5 as a core part of p53 signaling pathway after the DNA damage, and explore the dynamics and stability of the tumor suppressor p53. The dynamics of p53 may decide the cell fate after the DNA damage, while the oscillation of p53 may induce cell cycle arrest and so promote the repair of DNA, and the high levels of p53 can trigger apoptosis. However, p53 activity may be inhibited by its negative regulator Mdm2 in some cancer cells, as Mdm2 is of overexpression due to the increase in Mdm2 production rate. So we first investigate the effect of Mdm2 production rate on the kinetics of p53 through bifurcation analysis. after the DNA damage. With the increase in Mdm2 production rate, p53 can display a steady state, a stable-limit cycle and the coexistence of a stable-limit cycle and a stable steady state. Furthermore, the potential landscapes for oscillation show that the lower concentration of p53 means a stronger stability, whereas those for bistability of the higher steady state and the oscillatory state illustrate that stability of the higher steady state increases with the increasing Mdm2 production rate. In addition, noise strength can greatly affect the stability of p53 oscillations, so we explore the effect of noise strength on potential landscapes, barrier heights and periods. A smaller noise strength leads to a higher barrier height associated with more stable-limit cycle, and the harmonic oscillation with more uniform period and smaller variance is helpful to have more stable maintainance. Our results may be useful for understanding regulation of p53 signaling pathway after DNA damage.
      通信作者: 杨卓琴, yangzhuoqin@buaa.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11372017, 11472009)和 内蒙古自治区高等学校科学技术研究项目(批准号: NJZY14130)资助的课题.
      Corresponding author: Yang Zhuo-Qin, yangzhuoqin@buaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11372017, 11472009), and the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region, China (Grant No. NJZY14130).
    [1]

    Kubbutat M H G, Jones S N, Vousden K H 1997 Nature 387 299

    [2]

    Vousden K H, Lane D P 2007 Nat.Rev. Mol. Cell Biol. 8 275

    [3]

    Zhang X P, Liu F, Wang W 2012 Biophys. J. 102 2251

    [4]

    Zhang X P, Liu F, Cheng Z, Wang W 2009 Proc. Natl. Acad. Sci. U.S.A 106 12245

    [5]

    Zhang X P, Liu F, Wang W 2011 Proc. Natl. Acad. Sci. U.S.A 108 8990

    [6]

    Ashcroft M, Vousden K H 1999 Oncogene 18 7637

    [7]

    Tovar C, Rosinski J, Filipovic Z, Higgins B, Kolinsky K, Hilton H, Vassilev L T 2006 Proc. Natl. Acad. Sci. U.S.A 103 1888

    [8]

    Bose I, Ghosh B 2007 J. Biosci. 32 991

    [9]

    Zhang L J, Yan S W, Zhuo Y Z 2007 Acta Phys. Sin. 56 2442 (in Chinese) [张丽娟, 晏世伟, 卓益忠 2007 物理学报 56 2442]

    [10]

    Xia J F, Jia Y 2010 Chin. Phys. B 19 040506

    [11]

    Geng D Y, Xie H J, Wan X W, Xu G Z 2014 Acta Phys. Sin. 63 018702 (in Chinese) [耿读艳, 谢红娟, 万晓伟, 徐桂芝 2014 物理学报 63 018702]

    [12]

    Bakkenist C J, Kastan M B 2003 Nature 421 499

    [13]

    Stommel J M, Wahl G M 2004 EMBO J. 23 1547

    [14]

    Yin Y, Stephen C W, Luciani M G, Fahraeus R 2002 Nat. Cell Biol. 4 462

    [15]

    Xu L J, Hu J, Zhao Y B, Hu J, Xiao J, Wang Y M, Ma D, Chen Y Y 2012 Apoptosis 17 1235

    [16]

    Zhuge C J, Sun X J, Chen Y Y, Lei J Z 2015 arXiv:1503.08274v1 [q-bio.MN]

    [17]

    Batchelor E, Mock C S, Bhan I, Loewer A, Lahav G 2008 Mol. Cell 30 277

    [18]

    Frauenfelder H, Sligar S G, Wolynes P G 1991 Science 254 1598

    [19]

    Wang J, Xu L, Wang E K 2008 Proc. Natl. Acad. Sci. U.S.A 105 12271

    [20]

    Wang J, Li C H, Wang E K 2010 Proc. Natl. Acad. Sci. U.S.A 107 8195

    [21]

    Tay S, Hughey J J, Lee T K, Lipniacki T, Quake S R, Covert M W 2010 Nature 466 267

    [22]

    Yan H, Zhao L, Hu L, Wang X D, Wang E K, Wang J 2013 Proc. Natl. Acad. Sci. U.S.A 110 E4185

    [23]

    Cao Z, Wang W D 2015 Prog. Biochem. Biophys. 42 147 (in Chinese) [曹志, 王卫东 2015 生物化学与生物物理进展 42 147]

    [24]

    Rinaldo C, Prodosmo A, Mancini F, Iacovelli S, Sacchi A, Moretti F, Soddu S 2007 Mol. Cell 25 739

  • [1]

    Kubbutat M H G, Jones S N, Vousden K H 1997 Nature 387 299

    [2]

    Vousden K H, Lane D P 2007 Nat.Rev. Mol. Cell Biol. 8 275

    [3]

    Zhang X P, Liu F, Wang W 2012 Biophys. J. 102 2251

    [4]

    Zhang X P, Liu F, Cheng Z, Wang W 2009 Proc. Natl. Acad. Sci. U.S.A 106 12245

    [5]

    Zhang X P, Liu F, Wang W 2011 Proc. Natl. Acad. Sci. U.S.A 108 8990

    [6]

    Ashcroft M, Vousden K H 1999 Oncogene 18 7637

    [7]

    Tovar C, Rosinski J, Filipovic Z, Higgins B, Kolinsky K, Hilton H, Vassilev L T 2006 Proc. Natl. Acad. Sci. U.S.A 103 1888

    [8]

    Bose I, Ghosh B 2007 J. Biosci. 32 991

    [9]

    Zhang L J, Yan S W, Zhuo Y Z 2007 Acta Phys. Sin. 56 2442 (in Chinese) [张丽娟, 晏世伟, 卓益忠 2007 物理学报 56 2442]

    [10]

    Xia J F, Jia Y 2010 Chin. Phys. B 19 040506

    [11]

    Geng D Y, Xie H J, Wan X W, Xu G Z 2014 Acta Phys. Sin. 63 018702 (in Chinese) [耿读艳, 谢红娟, 万晓伟, 徐桂芝 2014 物理学报 63 018702]

    [12]

    Bakkenist C J, Kastan M B 2003 Nature 421 499

    [13]

    Stommel J M, Wahl G M 2004 EMBO J. 23 1547

    [14]

    Yin Y, Stephen C W, Luciani M G, Fahraeus R 2002 Nat. Cell Biol. 4 462

    [15]

    Xu L J, Hu J, Zhao Y B, Hu J, Xiao J, Wang Y M, Ma D, Chen Y Y 2012 Apoptosis 17 1235

    [16]

    Zhuge C J, Sun X J, Chen Y Y, Lei J Z 2015 arXiv:1503.08274v1 [q-bio.MN]

    [17]

    Batchelor E, Mock C S, Bhan I, Loewer A, Lahav G 2008 Mol. Cell 30 277

    [18]

    Frauenfelder H, Sligar S G, Wolynes P G 1991 Science 254 1598

    [19]

    Wang J, Xu L, Wang E K 2008 Proc. Natl. Acad. Sci. U.S.A 105 12271

    [20]

    Wang J, Li C H, Wang E K 2010 Proc. Natl. Acad. Sci. U.S.A 107 8195

    [21]

    Tay S, Hughey J J, Lee T K, Lipniacki T, Quake S R, Covert M W 2010 Nature 466 267

    [22]

    Yan H, Zhao L, Hu L, Wang X D, Wang E K, Wang J 2013 Proc. Natl. Acad. Sci. U.S.A 110 E4185

    [23]

    Cao Z, Wang W D 2015 Prog. Biochem. Biophys. 42 147 (in Chinese) [曹志, 王卫东 2015 生物化学与生物物理进展 42 147]

    [24]

    Rinaldo C, Prodosmo A, Mancini F, Iacovelli S, Sacchi A, Moretti F, Soddu S 2007 Mol. Cell 25 739

  • [1] 赵武, 张鸿斌, 孙超凡, 黄丹, 范俊锴. 受垂直激励和水平约束的单摆系统亚谐共振分岔与混沌. 物理学报, 2021, 70(24): 240202. doi: 10.7498/aps.70.20210953
    [2] 杨红丽, 刘楠, 杨联贵. Mdm2介导的正反馈环对p53基因网络振荡行为的影响. 物理学报, 2021, 70(13): 138701. doi: 10.7498/aps.70.20210015
    [3] 向俊杰, 毕闯, 向勇, 张千, 王京梅. 峰值电流模式控制同步开关Z源变换器的动力学研究. 物理学报, 2014, 63(12): 120507. doi: 10.7498/aps.63.120507
    [4] 丁虎, 严巧赟, 陈立群. 轴向加速运动黏弹性梁受迫振动中的混沌动力学. 物理学报, 2013, 62(20): 200502. doi: 10.7498/aps.62.200502
    [5] 张方樱, 杨汝, 龙晓莉, 谢陈跃, 陈虹. V2控制Buck变换器分岔与混沌行为的机理及镇定. 物理学报, 2013, 62(21): 218404. doi: 10.7498/aps.62.218404
    [6] 何圣仲, 周国华, 许建平, 包伯成, 杨平. V2控制Buck变换器等效建模与分岔分析. 物理学报, 2013, 62(11): 110503. doi: 10.7498/aps.62.110503
    [7] 鲁延玲, 蒋国平, 宋玉蓉. 自适应网络中病毒传播的稳定性和分岔行为研究. 物理学报, 2013, 62(13): 130202. doi: 10.7498/aps.62.130202
    [8] 沈壮志, 吴胜举. 声场与电场作用下空化泡的动力学特性. 物理学报, 2012, 61(12): 124301. doi: 10.7498/aps.61.124301
    [9] 季颖, 毕勤胜. 高维广义蔡氏电路中的快慢动力学行为及其分岔分析. 物理学报, 2012, 61(1): 010202. doi: 10.7498/aps.61.010202
    [10] 胡文, 赵广浩, 张弓, 张景乔, 刘贤龙. 时标正弦动力学方程稳定性与分岔分析. 物理学报, 2012, 61(17): 170505. doi: 10.7498/aps.61.170505
    [11] 古华光, 朱洲, 贾冰. 一类新的混沌神经放电的动力学特征的实验和数学模型研究. 物理学报, 2011, 60(10): 100505. doi: 10.7498/aps.60.100505
    [12] 孟继德, 包伯成, 徐强. 二维抛物线离散映射的动力学研究. 物理学报, 2011, 60(1): 010504. doi: 10.7498/aps.60.010504
    [13] 张立森, 蔡理, 冯朝文. 约瑟夫森结中周期解及其稳定性的解析分析. 物理学报, 2011, 60(3): 030308. doi: 10.7498/aps.60.030308
    [14] 吴淑花, 孙毅, 郝建红, 许海波. 耦合发电机系统的分岔和双参数特性. 物理学报, 2011, 60(1): 010507. doi: 10.7498/aps.60.010507
    [15] 罗诗裕, 李洪涛, 吴木营, 王善进, 凌东雄, 张伟风, 邵明珠. 应变超晶格系统的共振行为及其动力学稳定性. 物理学报, 2010, 59(8): 5766-5771. doi: 10.7498/aps.59.5766
    [16] 谢帆, 杨汝, 张波. 电流反馈型Buck变换器二维分段光滑系统边界碰撞和分岔研究. 物理学报, 2010, 59(12): 8393-8406. doi: 10.7498/aps.59.8393
    [17] 何学军, 张良欣, 任爱娣. 横向补给系统高架索的稳定性与分岔研究. 物理学报, 2010, 59(5): 3088-3092. doi: 10.7498/aps.59.3088
    [18] 陈章耀, 毕勤胜. Jerk系统耦合的分岔和混沌行为. 物理学报, 2010, 59(11): 7669-7678. doi: 10.7498/aps.59.7669
    [19] 侯东晓, 刘彬, 时培明. 一类滞后相对转动动力学方程的分岔特性及其解析近似解. 物理学报, 2009, 58(9): 5942-5949. doi: 10.7498/aps.58.5942
    [20] 包伯成, 康祝圣, 许建平, 胡文. 含指数项广义平方映射的分岔和吸引子. 物理学报, 2009, 58(3): 1420-1431. doi: 10.7498/aps.58.1420
计量
  • 文章访问数:  5747
  • PDF下载量:  228
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-16
  • 修回日期:  2015-10-13
  • 刊出日期:  2016-01-20

/

返回文章
返回