搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tb0.3Dy0.7Fe2合金磁畴偏转的滞回特性研究

严柏平 张成明 李立毅 吕福在 邓双

引用本文:
Citation:

Tb0.3Dy0.7Fe2合金磁畴偏转的滞回特性研究

严柏平, 张成明, 李立毅, 吕福在, 邓双

Study on hysteresis characteristics of magnetic domain rotation in Tb0.3Dy0.7Fe2 alloy

Yan Bai-Ping, Zhang Cheng-Ming, Li Li-Yi, Lü Fu-Zai, Deng Shuang
PDF
导出引用
  • 研究了不同载荷作用下Tb0.3Dy0.7Fe2合金在压磁和磁弹性效应中磁畴偏转的滞回特性. 基于Stoner-Wolhfarth模型的能量极小原理, 采用绘制自由能-磁畴偏转角度关系曲线的求解方法, 研究了压磁和磁弹性效应中载荷作用下的磁畴角度偏转和磁化过程, 计算分析了不同载荷作用下磁畴偏转的滞回特性. 研究表明, 压磁和磁弹性效应中磁畴偏转均存在明显的滞回、跃迁效应, 其中磁化强度的滞回效应来源于磁畴偏转的角度跃迁; 压磁效应中预加磁场的施加将增大磁化强度的滞回, 同时使滞回曲线向大压应力方向偏移; 磁弹性效应中磁畴偏转的滞回存在两个临界磁场强度, 不同磁场强度下合金具有不同的磁畴偏转路径和磁化滞回曲线, 临界磁场强度的大小取决于预压应力的施加. 理论分析对类磁致伸缩材料磁畴偏转模型的完善和材料器件的设计应用非常有意义.
    In this paper, the rotation effects of magnetic domain with different pre-compressive stress and basic magnetic field in the Tb0.3Dy0.7Fe2 alloy have been studied, the curves of magnetization induced by the rotation of magnetic domains are calculated, and the hysteresis characteristics of magnetization in the process of piezomagnetic and magnetoelastic effects are summarized. Based on the minimal value principle of three-dimensional Stoner-Wolhfarth (S-W) model, the total free energy of magnetostrictive particles (including magneto-crystal line anisotropy energy, stress-induced anisotropy energy, and magnetic field energy) is calculated, the curve of free energy is plotted as a function of domain rotation angle for various compressive stresses and magnetic fields. Then, the values of rotation angle for the magnetic domains in the eight easy axial directions 111 are given, and the summation values of magnetization induced by the rotations of magnetic domain angle are analyzed, the hysteresis characteristics and the hysteresis loops of magnetic domain rotations are calculated and discussed. All the above results indicate that the rotations of magnetic domains in the TbDyFe alloy have hysteresis and transition effects in its piezomagnetic and magnetoelastic processes, and the hysteresis effect of magnetization is always induced by the irreversible transitions of domain angle rotation. Due to the load of magnetic field and compressive stress, the angle of the eight easy axial domains 111 will rotate to the more suitable free energy directions, the reversible and irreversible transitions of domain rotation appear in this rotation, and irreversible transition will induce a larger value of changes in the magnetization existing as a hysteresis loop. Also, In the piezomagnetic effect, magnetization hysteresis loop appears with the load of basic magnetic field, and the increase of magnetic field will help to enhance its hysteresis loop and lead to the hysteresis curve deflected toward the greater compressive stress direction. Thirdly, the hysteresis effects of magnetic domain rotation have two important critical magnetic fields in the magnetoelastic process: the magnetostrictive materials will have different domain rotation paths and hysteresis curve in different basic magnetic fields, and the value of critical field will be influenced by the load of pre-compressive stress. Lastly, the experimental testing is used to verify the model and calculations, and the test results of magnetic remanence are in good agreement with the calculated results, especially in the larger values of pre-compressive stress loads. The above computations have a significance for perfecting magnetic domain deflection model and the results are helpful for designing and analyzing of magnetosrictive materials in application.
      通信作者: 严柏平, d_enip@163.com
    • 基金项目: 国家自然科学基金(批准号: 51407157, 51307027)资助的课题.
      Corresponding author: Yan Bai-Ping, d_enip@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51407157, 51307027).
    [1]

    Eason G, Noble B, Sneddon I N 2000 Sensors and Actuators 81 275

    [2]

    Bottauscio O, Roccato P E, Zucca M 2010 IEEE Trans. Magn. 46 3022

    [3]

    Zucca M, Roccato P E, Bottauscio O, Beatrice C 2010 IEEE Trans. Magn. 46 183

    [4]

    Grunwald A, Olabi A G 2008 Sensors and Actuators A 144 161

    [5]

    Karunanidhi S, Singaperumal M 2010 Sensors and Actuators A 157 185

    [6]

    Davino D, Giustiniani A, Visone C 2010 IEEE Trans. Magn. 46 646

    [7]

    Cullity B D, Graham C D 2009 Introduction to Magnetic Materials (New Jersey: Wiley) p258

    [8]

    Zheng L, Jiang C B, Shang J X, Xu H B 2009 Chin. Phys. B 18 1647

    [9]

    Wang Z B, Liu J H, Jiang C B 2010 Chin. Phys. B 19 117504

    [10]

    Clark A E, Yoo J H, Cullen J R, Fogle M W, Petculescu G, Flatau A 2009 J. Appl. Phys. 105 07A913

    [11]

    Yan J C, Xie X Q, Yang S Q, He S Y 2001 J. Magn. Magn. Mater. 223 27

    [12]

    Mei W, Umeda T, Zhou S, Wang R 1997 J. Alloys Compd. 248 151

    [13]

    Liu J H, Wang Z B, Jiang C B, Xu H B 2010 J. Appl. Phys. 108 033913

    [14]

    Chen Y H, Jiles D C 2001 IEEE Trans. Magn. 37 3069

    [15]

    Clark A E, Savege H T, Spano M L 1984 IEEE Trans. Magn. 20 1443

    [16]

    Jiles D C, Thoelke J B 1994 J. Magn. Mater. 134 143

    [17]

    Zhang H, Zeng D C 2010 Atca Phys. Sin. 59 2808 (in Chinese) [张辉, 曾德长 2010 物理学报 59 2808]

    [18]

    Zhang H, Zeng D C, Liu Z W 2011 Atca Phys. Sin. 60 067503 (in Chinese) [张辉, 曾德长, 刘仲武 2011 物理学报 60 067503]

    [19]

    Zhang H, Zeng D C 2010 J. Appl. Phys. 107 123918

    [20]

    Li L Y, Yan B P, Zhang C M, Cao J W 2012 Atca Phys. Sin. 61 167506 (in Chinese) [李立毅, 严柏平, 张成明, 曹继伟 2012 物理学报 61 167506]

    [21]

    Stoner E C, Wohifarth E P 1948 Philos. Trans. Roy. Soc. London. A 240 599

    [22]

    Mei W, Okane T, Umeda T 1998 J. Appl. Phys. 84 6208

    [23]

    Armstrong W D 2002 J. Inter. Mater. Syst. Struct. 13 137

    [24]

    Armstrong W D 1997 J. Appl. Phys. 81 3548

    [25]

    Zhao X G, Lord D G 1998 J. Appl. Phys. 83 7276

    [26]

    Zhang H 2011 Appl. Phys. Lett. 98 232505

  • [1]

    Eason G, Noble B, Sneddon I N 2000 Sensors and Actuators 81 275

    [2]

    Bottauscio O, Roccato P E, Zucca M 2010 IEEE Trans. Magn. 46 3022

    [3]

    Zucca M, Roccato P E, Bottauscio O, Beatrice C 2010 IEEE Trans. Magn. 46 183

    [4]

    Grunwald A, Olabi A G 2008 Sensors and Actuators A 144 161

    [5]

    Karunanidhi S, Singaperumal M 2010 Sensors and Actuators A 157 185

    [6]

    Davino D, Giustiniani A, Visone C 2010 IEEE Trans. Magn. 46 646

    [7]

    Cullity B D, Graham C D 2009 Introduction to Magnetic Materials (New Jersey: Wiley) p258

    [8]

    Zheng L, Jiang C B, Shang J X, Xu H B 2009 Chin. Phys. B 18 1647

    [9]

    Wang Z B, Liu J H, Jiang C B 2010 Chin. Phys. B 19 117504

    [10]

    Clark A E, Yoo J H, Cullen J R, Fogle M W, Petculescu G, Flatau A 2009 J. Appl. Phys. 105 07A913

    [11]

    Yan J C, Xie X Q, Yang S Q, He S Y 2001 J. Magn. Magn. Mater. 223 27

    [12]

    Mei W, Umeda T, Zhou S, Wang R 1997 J. Alloys Compd. 248 151

    [13]

    Liu J H, Wang Z B, Jiang C B, Xu H B 2010 J. Appl. Phys. 108 033913

    [14]

    Chen Y H, Jiles D C 2001 IEEE Trans. Magn. 37 3069

    [15]

    Clark A E, Savege H T, Spano M L 1984 IEEE Trans. Magn. 20 1443

    [16]

    Jiles D C, Thoelke J B 1994 J. Magn. Mater. 134 143

    [17]

    Zhang H, Zeng D C 2010 Atca Phys. Sin. 59 2808 (in Chinese) [张辉, 曾德长 2010 物理学报 59 2808]

    [18]

    Zhang H, Zeng D C, Liu Z W 2011 Atca Phys. Sin. 60 067503 (in Chinese) [张辉, 曾德长, 刘仲武 2011 物理学报 60 067503]

    [19]

    Zhang H, Zeng D C 2010 J. Appl. Phys. 107 123918

    [20]

    Li L Y, Yan B P, Zhang C M, Cao J W 2012 Atca Phys. Sin. 61 167506 (in Chinese) [李立毅, 严柏平, 张成明, 曹继伟 2012 物理学报 61 167506]

    [21]

    Stoner E C, Wohifarth E P 1948 Philos. Trans. Roy. Soc. London. A 240 599

    [22]

    Mei W, Okane T, Umeda T 1998 J. Appl. Phys. 84 6208

    [23]

    Armstrong W D 2002 J. Inter. Mater. Syst. Struct. 13 137

    [24]

    Armstrong W D 1997 J. Appl. Phys. 81 3548

    [25]

    Zhao X G, Lord D G 1998 J. Appl. Phys. 83 7276

    [26]

    Zhang H 2011 Appl. Phys. Lett. 98 232505

  • [1] 李文秋, 唐彦娜, 刘雅琳, 王刚. 电子温度各向异性对螺旋波m = 1角向模功率沉积特性的影响. 物理学报, 2024, 73(7): 075202. doi: 10.7498/aps.73.20231759
    [2] 李文秋, 唐彦娜, 刘雅琳, 王刚. 电子温度各向异性对螺旋波等离子体中电磁模式的传播及功率沉积特性的影响. 物理学报, 2023, 72(5): 055202. doi: 10.7498/aps.72.20222048
    [3] 汪静丽, 杨志雄, 董先超, 尹亮, 万洪丹, 陈鹤鸣, 钟凯. 基于VO2的太赫兹各向异性编码超表面. 物理学报, 2023, 72(12): 124204. doi: 10.7498/aps.72.20222171
    [4] 丁燕, 钟粤华, 郭俊青, 卢毅, 罗昊宇, 沈云, 邓晓华. 黑磷各向异性拉曼光谱表征及电学特性. 物理学报, 2021, 70(3): 037801. doi: 10.7498/aps.70.20201271
    [5] 欧阳昊, 胡思扬, 申曼玲, 张晨希, 程湘爱, 江天. GeSe2中强各向异性偏振相关的非线性光学响应. 物理学报, 2020, 69(18): 184212. doi: 10.7498/aps.69.20200443
    [6] 卢敏, 黄惠莲, 余冬海, 刘维清, 魏望和. 不同晶面银纳米晶高温熔化的各向异性. 物理学报, 2015, 64(10): 106101. doi: 10.7498/aps.64.106101
    [7] 严柏平, 张成明, 李立毅, 唐志峰, 吕福在, 杨克己. Tb0.3Dy0.7Fe2合金的本构参数辨识方法研究. 物理学报, 2015, 64(2): 027501. doi: 10.7498/aps.64.027501
    [8] 张永伟, 殷春浩, 赵强, 李富强, 朱姗姗, 刘海顺. TiO2电子结构与其双折射性、各向异性关联的理论研究. 物理学报, 2012, 61(2): 027801. doi: 10.7498/aps.61.027801
    [9] 万进, 田煜, 周铭, 张向军, 孟永钢. 载荷对壁虎刚毛束的摩擦各向异性特性影响的实验研究. 物理学报, 2012, 61(1): 016202. doi: 10.7498/aps.61.016202
    [10] 李立毅, 严柏平, 张成明, 曹继伟. Tb0.3Dy0.7Fe2合金磁畴偏转研究. 物理学报, 2012, 61(16): 167506. doi: 10.7498/aps.61.167506
    [11] 刘雍, 周睿, 李靖, 张悦, 熊锐, 尹镝, 汤五丰, 石兢. 尖晶石结构自旋有序CaTi2O4单晶生长和磁化率特性研究. 物理学报, 2010, 59(8): 5620-5625. doi: 10.7498/aps.59.5620
    [12] 万勇, 韩文娟, 刘均海, 夏临华, Xavier Mateos, Valentin Petrov, 张怀金, 王继扬. 单斜结构的Yb:KLu(WO4)2晶体光谱和激光性质的各向异性. 物理学报, 2009, 58(1): 278-284. doi: 10.7498/aps.58.278.1
    [13] 周建华, 刘虹遥, 罗海陆, 文双春. 各向异性超常材料中倒退波的传播研究. 物理学报, 2008, 57(12): 7729-7736. doi: 10.7498/aps.57.7729
    [14] 王志军, 王锦程, 杨根仓. 各向异性作用下合金定向凝固界面稳定性的渐近分析. 物理学报, 2008, 57(2): 1246-1253. doi: 10.7498/aps.57.1246
    [15] 孟繁义, 吴 群, 傅佳辉, 杨国辉. 各向异性超常媒质矩形波导的导波特性研究. 物理学报, 2008, 57(9): 5476-5484. doi: 10.7498/aps.57.5476
    [16] 孟繁义, 吴 群, 傅佳辉, 顾学迈, 李乐伟. 三维各向异性超常媒质交错结构的亚波长谐振特性研究. 物理学报, 2008, 57(10): 6213-6220. doi: 10.7498/aps.57.6213
    [17] 史力斌, 任骏原, 张凤云, 张国华, 余增强. 关于MgB2/Al2O3超导薄膜电阻转变和各向异性的研究. 物理学报, 2007, 56(9): 5353-5358. doi: 10.7498/aps.56.5353
    [18] 翁紫梅, 陈 浩. 单离子各向异性影响下的一维铁磁链中的孤子. 物理学报, 2007, 56(4): 1911-1918. doi: 10.7498/aps.56.1911
    [19] 刘少斌, 莫锦军, 袁乃昌. 各向异性磁等离子体的辅助方程FDTD算法. 物理学报, 2004, 53(7): 2233-2236. doi: 10.7498/aps.53.2233
    [20] 李安华, 董生智, 李卫. 烧结Sm2Co17型永磁材料的力学性能及断裂行为的各向异性. 物理学报, 2002, 51(10): 2320-2324. doi: 10.7498/aps.51.2320
计量
  • 文章访问数:  5976
  • PDF下载量:  188
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-23
  • 修回日期:  2016-01-04
  • 刊出日期:  2016-03-05

/

返回文章
返回