搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tm3+掺杂Ge-Ga-S玻璃微球-石英光纤锥耦合系统的荧光回廊模特性

张兴迪 吴越豪 杨正胜 戴世勋 张培晴 张巍 徐铁锋 张勤远

引用本文:
Citation:

Tm3+掺杂Ge-Ga-S玻璃微球-石英光纤锥耦合系统的荧光回廊模特性

张兴迪, 吴越豪, 杨正胜, 戴世勋, 张培晴, 张巍, 徐铁锋, 张勤远

Fluorescence whispering gallery modes in Tm3+-doped Ge-Ga-S chalcogenide glasses microsphere-silica fiber taper coupling system

Zhang Xing-Di, Wu Yue-Hao, Yang Zheng-Sheng, Dai Shi-Xun, Zhang Pei-Qing, Zhang Wei, Xu Tie-Feng, Zhang Qin-Yuan
PDF
导出引用
  • 以熔融淬冷法自制了Tm3+掺杂Ge-Ga-S硫系玻璃, 并以此为基质材料, 用漂浮粉料熔融法制备了直径分布为50-200 m的高品质因数(Q 104)的有源硫系玻璃微球谐振腔. 在显微镜下优选出一颗表面质量好、球形度较高、直径为72.84 m的微球, 与氢氧焰扫描拉锥法制备的一根腰锥直径为1.93 m的石英光纤锥进行近场耦合. 根据基质材料的吸收光谱特性, 选用808 nm的半导体激光器作为抽运源. 实验测得光纤锥倏逝波场激发出了掺Tm3+硫系玻璃微球在1460 nm附近的荧光回廊模式, 其典型共振峰间隔为4.39 nm. 实验测得的荧光回廊模式与米氏散射理论计算结果符合度较高(最大误差仅为0.047%), 验证了本文提出的掺Tm3+硫系微球制备及耦合工艺的可行性.
    Microsphere resonators based on chalcogenide glasses combine the superior optical properties of microsphere resonators (such as high Q-factors and small mode volumes) and excellent material properties of chalcogenide glasses in the infrared spectrum (such as good transmissivities, high refractive indices, and low phonon energies), and thus have promising applications in the fields of low-threshold infrared lasers, nonlinear Raman amplifiers/lasers, and narrow bandwidth infrared filters.In this work, the infrared microsphere resonators are built by using a novel chalcogenide glass composition of 75 GeS2-15 Ga2S3-10 CsI (Ge-Ga-S), doped with 1.3 wt% Tm. Compared with previously reported chalcogenide microsphere resonators fabricated with As2S3 and gallium lanthanum sulfide (Ga-La-S) glasses, the proposed Ge-Ga-S glass does not contain the toxic element of As nor the expensive rare earth element of La, and thus is more environmentally friendly and cost-effective for fabricators and users. We first fabricate bulk Ge-Ga-S glasses by using the facility in our laboratory. After measuring the absorption and fluorescence spectra of bulk glasses, they are crushed into powders and the powders are blown downwards through an inert-gas-filled vertical furnace (temperature set at 1000 ℃). Molten glass powders are transformed into high-quality microspheres in the furnace due to surface tension. Thousands of microspheres with diameters ranging from 50 to 200 m can be made in one fabrication process. By using optical microscopy and scanning electron microscopy, a microsphere with high surface quality is selected for further optical characterization. The selected microsphere has a diameter of 72.84 m, an eccentricity less than 1% (about 80 nm), and a Q-factor of 1.296104. A silica fiber taper with a waist-diameter of 1.93 m is fabricated as the coupling mechanism for the microsphere resonator. The coupling between the microsphere and the micro fiber taper is realized with the aid of nano-positioning stages. An 808 nm laser diode is used as a pump light source, which is sent into one end of the fiber taper and is evanescently coupled into the microsphere. Spontaneous emissions of fluorescent light are then generated in the microsphere, whose spectral characteristics are measured by using an optical spectrum analyzer. It can be clearly noted from the measurement results that the typical fluorescence spectrum of the Tm3+-doped Ge-Ga-S glass is modified by whispering gallery mode (WGM) patterns as periodic intensity peaks/valleys are apparently present in the measured spectral curves. The locations of those experimentally measured spectral peaks/valleys are in good agreement with WGM mode calculated results through using the Mie scattering theory, which verifies that the proposed Ge-Ga-S glass can be used to build high-quality infrared microsphere resonators. The largest deviation between the experimentally measured spectral peaks/valleys and theoretically calculated WGM modes is about 0.047%. Minor deviation is present because the experimentally fabricated microsphere has a small difference from an ideal sphere (with an eccentricity of about 1% in this work). Longer processing time of glass powders in the vertical furnace or a post-thermal treatment could help improve the sphericity of microspheres.
      通信作者: 吴越豪, wuyuehao@nbu.edu.cn
    • 基金项目: 国家自然科学基金重点项目(批准号:61435009)、浙江省自然科学基金(批准号:LQ15F050002)、发光材料与器件国家重点实验室开放基金(批准号:2014-skllmd-01)、宁波市自然科学基金(批准号:2014A610125,2015A610122)和浙江省重中之重学科开放基金(批准号:XKL141039)资助的课题.
      Corresponding author: Wu Yue-Hao, wuyuehao@nbu.edu.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 61435009), the Natural Science Foundation of Zhejiang Province, China (Grant No. LQ15F050002), the Open Fund of The State Key Laboratory of Luminescent Materials and Devices, China (Grant No. 2014-skllmd-01), the Natural Science Foundation of Ningbo, China (Grant Nos. 2014A610125, 2015A610122), and the Open Fund of Priority Discipline of Zhejiang Province, China (Grant No. XKL141039).
    [1]

    Chao C Y, Guo L J 2006 J. Lightwave Technology 24 1395

    [2]

    Kippenberg T J, Spillane S M, Vahala K J 2004 Phys. Rev. Lett. 93 8193

    [3]

    Ilchenko V S, Yao X S, Maleki L 1999 Opt. Lett. 24 723

    [4]

    Cai M, Painter O, Vahala K J 2000 Phys. Rev. Lett. 85 74

    [5]

    Lv H, Liu A M, Wu Y, Tong J F, Yi X N, Li Q G 2009 Opt. Technique 35 712 (in Chinese) [吕昊, 刘爱梅, 吴芸, 童菊芳, 易煦农, 李钱光 2009 光学技术 35 712]

    [6]

    Peng X, Song F, Jiang S, Peyghambarian N, Kuwata-Gonokami M, Xu L 2003 Appl. Phys. Lett. 82 1497

    [7]

    Fujiwara H, Sasaki K 1999 J. Appl. Phys. 86 2385

    [8]

    Wang P, Ding M, Lee T, Murugan G S, Bo L, Semenova Y, Wu Q, Hewak D, Brambilla G, Farrell G 2013 Appl. Phys. Lett. 102 131110

    [9]

    Vanier F, Rochette M, Godbout N, Peter Y A 2013 Opt. Lett. 38 4966

    [10]

    Elliott G R, Hewak D W, Murugan G S, Wilkinson J S 2007 Opt. Express 15 17542

    [11]

    Zakery A, Elliott S R 2003 J. Non-Cryst. Solids. 330 1

    [12]

    Seddon A B 1995 J. Non-Cryst. Solids. 184 44

    [13]

    Elliott G R 2009 Ph. D. Dissertation (Southampton: University of Southampton)

    [14]

    Li C R, Dai S X, Zhang Q Y, Shen X, Wang X S, Zhang P Q, Lu L W, Wu Y H, Lv S Q 2015 Chin. Phys. B 24 237

    [15]

    Lv S Q, Wu Y H, Lu L W, Li C R, Zhang P Q, Zhang W, Dai S X 2014 J. Lumin. 35 454 (in Chinese) [吕社钦, 吴越豪, 路来伟, 李超然, 张培晴, 张巍, 戴世勋 2014 发光学报 35 454]

    [16]

    Dai S X, Lu L W, Tao G M, Xu Y S, Yin D M, Niu X K, Zhang W 2012 Laser Optoelectronics Progress 49 080001 (in Chinese) [戴世勋, 路来伟, 陶光明, 许银生, 尹冬梅, 牛雪珂, 张巍 2012 激光与光电子学进展 49 080001]

    [17]

    Lu L W, Wu Y H, Li C R, L S Q, Zhang P Q, Dai S X, Xu Y S, Shen X 2014 Acta Photonica Sinica 43 730002 (in Chinese) [路来伟, 吴越豪, 李超然, 吕社钦, 张培晴,戴世勋, 许银生, 沈祥 2014 光子学报 43 730002]

    [18]

    Lam C C, Leung P T, Young K 1992 J. Opt. Soc. Am. B 9 1585

    [19]

    Grillet C, Bian S N, Magi E, Eggleton B J 2008 Appl. Phys. Lett. 92 1109

  • [1]

    Chao C Y, Guo L J 2006 J. Lightwave Technology 24 1395

    [2]

    Kippenberg T J, Spillane S M, Vahala K J 2004 Phys. Rev. Lett. 93 8193

    [3]

    Ilchenko V S, Yao X S, Maleki L 1999 Opt. Lett. 24 723

    [4]

    Cai M, Painter O, Vahala K J 2000 Phys. Rev. Lett. 85 74

    [5]

    Lv H, Liu A M, Wu Y, Tong J F, Yi X N, Li Q G 2009 Opt. Technique 35 712 (in Chinese) [吕昊, 刘爱梅, 吴芸, 童菊芳, 易煦农, 李钱光 2009 光学技术 35 712]

    [6]

    Peng X, Song F, Jiang S, Peyghambarian N, Kuwata-Gonokami M, Xu L 2003 Appl. Phys. Lett. 82 1497

    [7]

    Fujiwara H, Sasaki K 1999 J. Appl. Phys. 86 2385

    [8]

    Wang P, Ding M, Lee T, Murugan G S, Bo L, Semenova Y, Wu Q, Hewak D, Brambilla G, Farrell G 2013 Appl. Phys. Lett. 102 131110

    [9]

    Vanier F, Rochette M, Godbout N, Peter Y A 2013 Opt. Lett. 38 4966

    [10]

    Elliott G R, Hewak D W, Murugan G S, Wilkinson J S 2007 Opt. Express 15 17542

    [11]

    Zakery A, Elliott S R 2003 J. Non-Cryst. Solids. 330 1

    [12]

    Seddon A B 1995 J. Non-Cryst. Solids. 184 44

    [13]

    Elliott G R 2009 Ph. D. Dissertation (Southampton: University of Southampton)

    [14]

    Li C R, Dai S X, Zhang Q Y, Shen X, Wang X S, Zhang P Q, Lu L W, Wu Y H, Lv S Q 2015 Chin. Phys. B 24 237

    [15]

    Lv S Q, Wu Y H, Lu L W, Li C R, Zhang P Q, Zhang W, Dai S X 2014 J. Lumin. 35 454 (in Chinese) [吕社钦, 吴越豪, 路来伟, 李超然, 张培晴, 张巍, 戴世勋 2014 发光学报 35 454]

    [16]

    Dai S X, Lu L W, Tao G M, Xu Y S, Yin D M, Niu X K, Zhang W 2012 Laser Optoelectronics Progress 49 080001 (in Chinese) [戴世勋, 路来伟, 陶光明, 许银生, 尹冬梅, 牛雪珂, 张巍 2012 激光与光电子学进展 49 080001]

    [17]

    Lu L W, Wu Y H, Li C R, L S Q, Zhang P Q, Dai S X, Xu Y S, Shen X 2014 Acta Photonica Sinica 43 730002 (in Chinese) [路来伟, 吴越豪, 李超然, 吕社钦, 张培晴,戴世勋, 许银生, 沈祥 2014 光子学报 43 730002]

    [18]

    Lam C C, Leung P T, Young K 1992 J. Opt. Soc. Am. B 9 1585

    [19]

    Grillet C, Bian S N, Magi E, Eggleton B J 2008 Appl. Phys. Lett. 92 1109

  • [1] 吕宇曦, 王晨, 段添期, 赵彤, 常朋发, 王安帮. 级联声光器件与回音壁模式微腔实现非对称传输. 物理学报, 2024, 73(1): 014101. doi: 10.7498/aps.73.20230653
    [2] 范思晨, 杨帆, 阮军. 蓝宝石谐振体内的回音壁模电磁场分布. 物理学报, 2022, 71(23): 234101. doi: 10.7498/aps.71.20221156
    [3] 于长秋, 马世昌, 陈志远, 项晨晨, 李海, 周铁军. 结构改进的厘米尺寸谐振腔的磁场传感特性. 物理学报, 2021, 70(16): 160701. doi: 10.7498/aps.70.20210247
    [4] 孟令俊, 王梦宇, 沈远, 杨煜, 徐文斌, 张磊, 王克逸. 具有内参考热补偿功能的三层膜结构微球腔折射率传感器. 物理学报, 2020, 69(1): 014203. doi: 10.7498/aps.69.20191265
    [5] 王梦宇, 孟令俊, 杨煜, 钟汇凯, 吴涛, 刘彬, 张磊, 伏燕军, 王克逸. 扁长型微瓶腔中的回音壁模式选择及Fano谐振. 物理学报, 2020, 69(23): 234203. doi: 10.7498/aps.69.20200817
    [6] 侯智善, 徐帅, 骆杨, 李爱武, 杨罕. 激光3D纳米打印温度敏感的微球激光器. 物理学报, 2019, 68(19): 194204. doi: 10.7498/aps.68.20190298
    [7] 吕月兰, 尹向宝, 孙伟民, 刘永军, 苑立波. 染料掺杂液晶填充毛细管的激光发射特性研究. 物理学报, 2018, 67(4): 044204. doi: 10.7498/aps.67.20171844
    [8] 陆赫林, 杜春光. 回音壁微腔光力系统的相干控制与完全相干透射. 物理学报, 2016, 65(21): 214204. doi: 10.7498/aps.65.214204
    [9] 陈华俊, 方贤文, 陈昌兆, 李洋. 基于双回音壁模式腔光力学系统的光学传播特性和超高分辨率光学质量传感. 物理学报, 2016, 65(19): 194205. doi: 10.7498/aps.65.194205
    [10] 王涛, 杨旭, 刘晓斐, 雷府川, 高铭, 胡蕴琪, 龙桂鲁. 基于回音壁微腔拉曼激光的纳米粒子探测. 物理学报, 2015, 64(16): 164212. doi: 10.7498/aps.64.164212
    [11] 邱康生, 赵彦辉, 刘相波, 冯宝华, 许秀来. 弯曲氧化锌微米线微腔中的回音壁模. 物理学报, 2014, 63(17): 177802. doi: 10.7498/aps.63.177802
    [12] 舒方杰. 微盘腔垂直耦合器特性的拓展分析. 物理学报, 2013, 62(6): 064212. doi: 10.7498/aps.62.064212
    [13] 祝昆, 周丽, 尤洪海, 江楠, 普小云. 光纤回音壁模式激光产生长度的实验与理论研究. 物理学报, 2011, 60(5): 054205. doi: 10.7498/aps.60.054205
    [14] 张远宪, 冯永利, 周丽, 普小云. 偏斜光线抽运下的回音壁模式光纤激光辐射特性. 物理学报, 2010, 59(3): 1802-1808. doi: 10.7498/aps.59.1802
    [15] 仇善良, 李永平. 圆腔回音壁模的自洽场描述. 物理学报, 2009, 58(12): 8309-8315. doi: 10.7498/aps.58.8309
    [16] 张远宪, 普小云, 祝昆, 韩德昱, 江楠. 回音壁模式光纤激光器的阈值特性研究. 物理学报, 2009, 58(5): 3179-3184. doi: 10.7498/aps.58.3179
    [17] 普小云, 白然, 向文丽, 杜飞, 江楠. 消逝波激励的双波段光纤回音壁模式激光辐射. 物理学报, 2009, 58(6): 3923-3928. doi: 10.7498/aps.58.3923
    [18] 刘 崇, 葛剑虹, 项 震, 陈 军. 热透镜的球差效应对大基模体积激光谐振腔模式的影响. 物理学报, 2008, 57(3): 1704-1708. doi: 10.7498/aps.57.1704
    [19] 杨 睿, 於文华, 鲍 洋, 张远宪, 普小云. 消逝场耦合圆柱形微腔中回音壁模式结构的实验研究. 物理学报, 2008, 57(10): 6412-6418. doi: 10.7498/aps.57.6412
    [20] 董玉和, 丁耀根, 肖 刘. 同轴谐振腔高阶横磁模式参数的研究. 物理学报, 2005, 54(12): 5629-5636. doi: 10.7498/aps.54.5629
计量
  • 文章访问数:  4575
  • PDF下载量:  147
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-07
  • 修回日期:  2016-05-16
  • 刊出日期:  2016-07-05

/

返回文章
返回