-
激光烧蚀推进中,烧蚀羽流对入射激光的屏蔽效应是影响推进性能的重要因素;当采用掺杂金属聚合物作为工质时,易电离金属掺杂物的引入,使屏蔽效应更加明显.本文建立了激光烧蚀掺杂金属聚合物羽流飞散及电离、屏蔽模型,计算了340 J/cm2激光烧蚀掺杂微米铝颗粒聚甲醛工质的比冲,与实验数据对比表明模型能够有效模拟掺杂聚合物羽流的屏蔽特性.获得了不同激光能量密度下的电子数密度、吸收系数分布及屏蔽系数时间变化曲线.结果表明:低激光能量密度(5 J/cm2)时,羽流屏蔽效应以未完全分解聚合物短链对入射激光能量的吸收为主;高激光能量密度(20 J/cm2)下,羽流电子数密度逐步增大至1020 m-3,形成明显的等离子体吸收,屏蔽系数的时间变化特征复杂.本文对掺杂金属聚合物烧蚀羽流的屏蔽特性进行了定量研究,可为激光烧蚀推进性能优化提供参考.For laser ablation propulsion, the shielding effect of ablation plume on the incident laser is an essential factor affecting the propulsion performance. When the polymer doped metal is utilized as the propellant, the shielding effect would be more significant because the metal dopant is easily ionized. In order to study the shielding effect of ablation plume on the incident laser energy, a laser ablation model with taking into account the plume expansion, ionization and the shielding effect is built in the present work. For the polyoxymethylene doped aluminum particles irradiated by a laser with a fluence of 3-40 J/cm2, the specific impulse of laser ablation is calculated, and the consistency of the numerical results with the experimental data demonstrates the availability of the model. Furthermore, the effects of both the incompletely decomposed polymer chains and the plasma induced by laser ablation on the incident laser are considered. The time variations of electron number density distribution under different laser fluences are calculated based on the laser induced ionization model. Subsequently, the absorption coefficient distributions and the time variations of shielding coefficient under different laser fluences are obtained. The results show that at a low laser fluence (5 J/cm2), the electron number density is small, so the plume shielding effect is dominated by the laser energy absorption of the small polymer chains which are not completely decomposed. While at a high laser fluence (20 J/cm2), small polymer chains are almost completely decomposed into atoms even plasma, hence the shielding effect is dominated by the plasma since the electron number density in the plume increases up to 1020 m-3, and the complicated characteristic in the time variation of shielding coefficient appears. The quantitative analysis results obtained in the present work can be helpful for optimizing the performances of laser ablation propulsion.
-
Keywords:
- laser ablation /
- polymer doped metal /
- shielding properties /
- polyoxymethylene
[1] Kantrowitz A 1972 Aeronaut. Astronaut. 10 74
[2] Phipps C, Birkan M, Bohn W Eckel H A, Horisawa H, Lippert T, Michaelis M, Rezunkov Y, Sasoh A, Schall W, Scharring S, Sinko J 2010 J. Propul. Power 26 609
[3] Mead Jr F B, Myrabo L N, Messitt D G 1998 High Power Laser Ablation International Society for Optics and Photonics Santa Fe, New Mexico, April 27-30, 1998 p560
[4] Schall W O, Tegel J, Eckel H A 2006 Third International Symposium on Beamed Energy Propulsion Troy, New York, October 11-14, 2006, p423
[5] Cheng J Z, Cai J, Hu Y, Zhang Z M, Ding Z J 2008 High Pow. Laser Part. Beams 20 1190(in Chinese)[程建中, 蔡建, 胡云, 张增明, 丁泽军2008强激光与粒子束20 1190]
[6] Peng J, Zheng H, Hu X J, Tang Z P 2009 High Pow. Laser Part. Beams 21 821(in Chinese)[彭杰, 郑航, 胡晓军, 唐志平2009强激光与粒子束21 821]
[7] Sinko J E, Pakhomov A V 2008 Fifth International Symposium on Beamed Energy Propulsion Kailua-Kona, Hawaii, November 12-15, 2008, p254
[8] Tong H F, Tang Z P, Zhang L 2007 J. Comput. Phys. 24 667(in Chinese)[童慧峰, 唐志平, 张凌2007计算物理24 667]
[9] Tong H F, Tang Z P, Zhang L 2006 High Pow. Laser Part. Beams 18 1996(in Chinese)[童慧峰, 唐志平, 张凌2006强激光与粒子束18 1996]
[10] Tong H F, Tang Z P 2008 Chin. J. High Pressure Phys. 22 142 (in Chinese) [童慧峰, 唐志平2008高压物理学报22 142]
[11] Kundrapu M, Keidar M 2009 40th AIAA Plasmadynamics and Lasers Conference, San Antonio, Texas June 22-25, 2009, p3589
[12] Keidar M, Boyd I D, Luke J, Phipps C 2004 J. Appl. Phys. 96 49
[13] Li G, Cheng M S, Li M S 2014 Acta Phys. Sin. 63 107901(in Chinese) [李干, 程谋森, 李小康2014物理学报63 107901]
[14] Sakai T, Sasoh A, Anju K, Sawada K, Mori K 2008 46th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 7-10, 2008 p1080
[15] Li G 2014 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [李干2014博士学位论文(长沙: 国防科学技术大学)]
[16] Lippert T 2004 Adv. Polym. Sci. 168 51
[17] Chang H, Ye J F, Zhou W J 2015 J. Propul. Technol. 36 1588(in Chinese) [常浩, 叶继飞, 周伟静2015推进技术36 1588]
[18] Andre P 1996 J. Phys. D: Appl. Phys. 29 1963
[19] Morgan C G 1975 Rep. Prog. Phys. 38 621
[20] Young M, Hercher M 1967 J. Appl. Phys. 38 4393
[21] Simth D C 1977 J. Appl. Phys. 48 2217
[22] Bäuerle D 2011 Laser Processing and Chemistry Fourth Edition (Berlin: Springer-Verlag) pp223-226
[23] Li G, Cheng M S, Li X K 2014 J. Natl. Univ. Def. Technol. 36 1(in Chinese)[李干, 程谋森, 李小康2014国防科技大学学报36 1]
[24] Donald E K (translated by Su Y L) 2003 The Art of Computer Programming (Vol. 2): Seminumerical Algorithms (3rd Ed.) (Beijing: National Defense Industry Press) p125(in Chinese) [唐纳德E K著(苏运霖译) 2003计算机程序设计艺术第二卷: 半数值算法(第三版)(北京: 国防工业出版社)第125页
[25] Peng J 2009 M. S. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [彭杰2009硕士学位论文(合肥: 中国科学技术大学)]
-
[1] Kantrowitz A 1972 Aeronaut. Astronaut. 10 74
[2] Phipps C, Birkan M, Bohn W Eckel H A, Horisawa H, Lippert T, Michaelis M, Rezunkov Y, Sasoh A, Schall W, Scharring S, Sinko J 2010 J. Propul. Power 26 609
[3] Mead Jr F B, Myrabo L N, Messitt D G 1998 High Power Laser Ablation International Society for Optics and Photonics Santa Fe, New Mexico, April 27-30, 1998 p560
[4] Schall W O, Tegel J, Eckel H A 2006 Third International Symposium on Beamed Energy Propulsion Troy, New York, October 11-14, 2006, p423
[5] Cheng J Z, Cai J, Hu Y, Zhang Z M, Ding Z J 2008 High Pow. Laser Part. Beams 20 1190(in Chinese)[程建中, 蔡建, 胡云, 张增明, 丁泽军2008强激光与粒子束20 1190]
[6] Peng J, Zheng H, Hu X J, Tang Z P 2009 High Pow. Laser Part. Beams 21 821(in Chinese)[彭杰, 郑航, 胡晓军, 唐志平2009强激光与粒子束21 821]
[7] Sinko J E, Pakhomov A V 2008 Fifth International Symposium on Beamed Energy Propulsion Kailua-Kona, Hawaii, November 12-15, 2008, p254
[8] Tong H F, Tang Z P, Zhang L 2007 J. Comput. Phys. 24 667(in Chinese)[童慧峰, 唐志平, 张凌2007计算物理24 667]
[9] Tong H F, Tang Z P, Zhang L 2006 High Pow. Laser Part. Beams 18 1996(in Chinese)[童慧峰, 唐志平, 张凌2006强激光与粒子束18 1996]
[10] Tong H F, Tang Z P 2008 Chin. J. High Pressure Phys. 22 142 (in Chinese) [童慧峰, 唐志平2008高压物理学报22 142]
[11] Kundrapu M, Keidar M 2009 40th AIAA Plasmadynamics and Lasers Conference, San Antonio, Texas June 22-25, 2009, p3589
[12] Keidar M, Boyd I D, Luke J, Phipps C 2004 J. Appl. Phys. 96 49
[13] Li G, Cheng M S, Li M S 2014 Acta Phys. Sin. 63 107901(in Chinese) [李干, 程谋森, 李小康2014物理学报63 107901]
[14] Sakai T, Sasoh A, Anju K, Sawada K, Mori K 2008 46th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 7-10, 2008 p1080
[15] Li G 2014 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [李干2014博士学位论文(长沙: 国防科学技术大学)]
[16] Lippert T 2004 Adv. Polym. Sci. 168 51
[17] Chang H, Ye J F, Zhou W J 2015 J. Propul. Technol. 36 1588(in Chinese) [常浩, 叶继飞, 周伟静2015推进技术36 1588]
[18] Andre P 1996 J. Phys. D: Appl. Phys. 29 1963
[19] Morgan C G 1975 Rep. Prog. Phys. 38 621
[20] Young M, Hercher M 1967 J. Appl. Phys. 38 4393
[21] Simth D C 1977 J. Appl. Phys. 48 2217
[22] Bäuerle D 2011 Laser Processing and Chemistry Fourth Edition (Berlin: Springer-Verlag) pp223-226
[23] Li G, Cheng M S, Li X K 2014 J. Natl. Univ. Def. Technol. 36 1(in Chinese)[李干, 程谋森, 李小康2014国防科技大学学报36 1]
[24] Donald E K (translated by Su Y L) 2003 The Art of Computer Programming (Vol. 2): Seminumerical Algorithms (3rd Ed.) (Beijing: National Defense Industry Press) p125(in Chinese) [唐纳德E K著(苏运霖译) 2003计算机程序设计艺术第二卷: 半数值算法(第三版)(北京: 国防工业出版社)第125页
[25] Peng J 2009 M. S. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [彭杰2009硕士学位论文(合肥: 中国科学技术大学)]
计量
- 文章访问数: 5913
- PDF下载量: 154
- 被引次数: 0