搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阵元随机均匀分布球面阵列联合噪声源定位方法

张揽月 丁丹丹 杨德森 时胜国 朱中锐

引用本文:
Citation:

阵元随机均匀分布球面阵列联合噪声源定位方法

张揽月, 丁丹丹, 杨德森, 时胜国, 朱中锐

Noise source identification by using near field acoustic holograpy and focused beamforming based on spherical microphone array with random unifrom distribution of elements

Zhang Lan-Yue, Ding Dan-Dan, Yang De-Sen, Shi Sheng-Guo, Zhu Zhong-Rui
PDF
导出引用
  • 基于球面传声器阵列的噪声源定位方法,设计加工了阵元随机均匀分布64元球面传声器阵列,研究了球面近场声全息和球谐函数模态展开聚焦波束形成联合噪声源定位识别方法,对算法的性能进行了仿真分析,并利用球面传声器阵列进行了噪声源的定位识别试验.研究表明,阵元随机均匀分布球面阵列具有全空间稳定的目标定位性能,球面近场声全息对低频近距离声源具有较高的定位精度,球谐函数模态展开聚焦波束形成对高频远距离声源具有较高的定位精度,将两种方法联合进行声源的定位识别,可以在较小孔径的球面阵列和较少阵元的条件下,在宽频带范围内获得对目标声源良好的定位性能.
    With the development of techlology, noise controlling has received wide attention in recent years. Noise source identification is the key step for noise controlling. Spherical microphone array, which can locate the noise source of arbitrary direction in three-dimensional space, has been widely used for noise source identification in recent years. Conventional methods of locating noise source include spherical near field acoustic holography and spherical focused beamforming. The acoustic quantities are reconstructed by using spherical near field acoustic holography method to realize the noise source identification, while the noise source can also be located by using focused beamforming based on spherical harmonic wave decomposition. However, both these methods have their own limitations when they are used in identifying the noise source. Spherical near field acoustic holography has low resolution at high frequency with a far distance from noise source to measurement array for noise source identification, whereas the spherically focused beamforming has low localization resolution at low frequency. Noise source identification is discussed here, and a 64-element microphone spherical array with randomly uniform distribution of elements is designed. The combination methods of noise source identification by using spherical near field acoustic holography and mode decomposition focused beamforming are investigated. The performance of the proposed combination method is simulated, and an experiment on noise source identification is carried out based on the designed spherical microphone array to test the validity of proposed method. Research results show that the high-resolution noise source identification can be achieved by using near field acoustic holography when reconstruction frequency is 100-1000 Hz with a distance 0.3-0.45 m from noise source to the center of spherical array, while high resolution of noise source localization can be achieved by using spherical wave decomposition beamforming when signal frequency is 1000-5000 Hz with a distance 0.5-3 m from noise source to the center of spherical array. Spherical array with random uniform distribution of elements maintains stable identification ability in all bearings. The spherical near field acoustic holography has high-resolution distinguishing ability in near field and at low frequency, while the focused beamforming method has high-resolution distinguishing ability in far field and at high frequency. Therefore the noise source can be efficiently identified by using the proposed combination method of near field holography and focused beamforming with less elements and small aperture spherical microphone array.
      通信作者: 朱中锐, zhuzhongrui@hrbeu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11674075,11404076)资助的课题.
      Corresponding author: Zhu Zhong-Rui, zhuzhongrui@hrbeu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant Nos. 11674075, 11404076).
    [1]

    Jens M, Gary E 2002 IEEE International Conference on Acoustics Orlando, FL, United States, May, 2002 p1781

    [2]

    Maynard J D, Williams E G, Lee Y 1985 J. Acoust. Soc. Am. 78 1395

    [3]

    Lee J C 1996 Appl. Acoust. 48 85

    [4]

    Li M Z, Lu H C, Jin J M 2015 Acta Acust. 40 695(in Chinese)[李敏宗, 卢奂采, 金江明2015声学学报40 695]

    [5]

    Yu F, Chen J, Chen X Z 2003 J. Vib. Eng. 16 85(in Chinese)[于飞, 陈剑, 陈心昭2003振动工程学报16 85]

    [6]

    Finn J, Guillermo M P 2011 J. Acoust. Soc. Am. 129 3461

    [7]

    Song Y L, Lu H C, Jin J M 2014 Acta Phys. Sin. 63 194305 (in Chinese)[宋玉来, 卢奂采, 金江明2014物理学报63 194305]

    [8]

    Ling M Z, Lu H C, Jin J M 2015 J. Vib. Eng. Chin. J. Sens. Actuat. 281459(in Chinese)[李敏宗, 卢奂采, 金江明2015传感技术学报28 1459]

    [9]

    Du L 2011 M. S. Dissertation (Zhenjiang:Zhejiang Sci-Tech University)(in Chinese)[杜亮2011硕士学位论文(浙江:浙江理工大学)]

    [10]

    Boaz R 2004 J. Acoust. Soc. Am. 116 2149

    [11]

    Etan F, Boaz R 2008 Proceedings of IEEE Convention of Acoustics Las Vegas, March 31-April 4, 2008 p5272

    [12]

    Etan F, Boaz R 2009 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics New Paltz, NY, October 2009 p169

    [13]

    Hald J 2013 SAE Int. J. Passeng. Cars-Mech. Syst. 6 1334

    [14]

    Lin Z B, Xu B L 2006 J. Nanjing Univ.(Nat. Sci.) 42 384

    [15]

    Tang Y Q, Huang Q H, Fang Y 2010 Signal Process. 26 655(in Chinese)[汤永清, 黄青华, 方勇2010信号处理26 654]

    [16]

    Chu Z G, Zhou Y N, Wang G J, He Y S 2012 Trans. Chin. Soc. Agric. Eng. 28 146 (in Chinese)[褚志刚, 周亚男, 王光建, 贺岩松2012农业工程学报28 146]

    [17]

    Tang C 2013 M. S. Dissertation (Hefei:Hefei University of Technology)(in Chinese)[汤辰2013硕士学位论文(合肥:合肥工业大学)]

    [18]

    Zhou Y N 2014 M. S. Dissertation(Chongqing:Chongqing University)(in Chinese)[周亚男2014硕士学位论文(重庆:重庆大学)]

    [19]

    Zhou X H 2008 Ph. D. Dissertation (Jilin:Jilin University)(in Chinese)[周晓华2008博士学位论文(吉林:吉林大学)]

    [20]

    Xin Y, Zhang Y B, Bi C X 2010 Acta Metrolog. Sin. 31 537(in Chinese)[辛雨, 张永斌, 毕传兴2010计量学报31 537]

  • [1]

    Jens M, Gary E 2002 IEEE International Conference on Acoustics Orlando, FL, United States, May, 2002 p1781

    [2]

    Maynard J D, Williams E G, Lee Y 1985 J. Acoust. Soc. Am. 78 1395

    [3]

    Lee J C 1996 Appl. Acoust. 48 85

    [4]

    Li M Z, Lu H C, Jin J M 2015 Acta Acust. 40 695(in Chinese)[李敏宗, 卢奂采, 金江明2015声学学报40 695]

    [5]

    Yu F, Chen J, Chen X Z 2003 J. Vib. Eng. 16 85(in Chinese)[于飞, 陈剑, 陈心昭2003振动工程学报16 85]

    [6]

    Finn J, Guillermo M P 2011 J. Acoust. Soc. Am. 129 3461

    [7]

    Song Y L, Lu H C, Jin J M 2014 Acta Phys. Sin. 63 194305 (in Chinese)[宋玉来, 卢奂采, 金江明2014物理学报63 194305]

    [8]

    Ling M Z, Lu H C, Jin J M 2015 J. Vib. Eng. Chin. J. Sens. Actuat. 281459(in Chinese)[李敏宗, 卢奂采, 金江明2015传感技术学报28 1459]

    [9]

    Du L 2011 M. S. Dissertation (Zhenjiang:Zhejiang Sci-Tech University)(in Chinese)[杜亮2011硕士学位论文(浙江:浙江理工大学)]

    [10]

    Boaz R 2004 J. Acoust. Soc. Am. 116 2149

    [11]

    Etan F, Boaz R 2008 Proceedings of IEEE Convention of Acoustics Las Vegas, March 31-April 4, 2008 p5272

    [12]

    Etan F, Boaz R 2009 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics New Paltz, NY, October 2009 p169

    [13]

    Hald J 2013 SAE Int. J. Passeng. Cars-Mech. Syst. 6 1334

    [14]

    Lin Z B, Xu B L 2006 J. Nanjing Univ.(Nat. Sci.) 42 384

    [15]

    Tang Y Q, Huang Q H, Fang Y 2010 Signal Process. 26 655(in Chinese)[汤永清, 黄青华, 方勇2010信号处理26 654]

    [16]

    Chu Z G, Zhou Y N, Wang G J, He Y S 2012 Trans. Chin. Soc. Agric. Eng. 28 146 (in Chinese)[褚志刚, 周亚男, 王光建, 贺岩松2012农业工程学报28 146]

    [17]

    Tang C 2013 M. S. Dissertation (Hefei:Hefei University of Technology)(in Chinese)[汤辰2013硕士学位论文(合肥:合肥工业大学)]

    [18]

    Zhou Y N 2014 M. S. Dissertation(Chongqing:Chongqing University)(in Chinese)[周亚男2014硕士学位论文(重庆:重庆大学)]

    [19]

    Zhou X H 2008 Ph. D. Dissertation (Jilin:Jilin University)(in Chinese)[周晓华2008博士学位论文(吉林:吉林大学)]

    [20]

    Xin Y, Zhang Y B, Bi C X 2010 Acta Metrolog. Sin. 31 537(in Chinese)[辛雨, 张永斌, 毕传兴2010计量学报31 537]

  • [1] 周达仁, 卢奂采, 程相乐, McFarland D. Michael. 基于反射系数估算的半空间边界阻抗和声源直接辐射重构. 物理学报, 2022, 71(12): 124301. doi: 10.7498/aps.71.20211924
    [2] 时胜国, 高塬, 张昊阳, 杨博全. 基于单元辐射叠加法的结构声源声场重建方法. 物理学报, 2021, 70(13): 134301. doi: 10.7498/aps.70.20201971
    [3] 刘备, 胡伟鹏, 邹孝, 丁亚军, 钱盛友. 基于变分模态分解与多尺度排列熵的生物组织变性识别. 物理学报, 2019, 68(2): 028702. doi: 10.7498/aps.68.20181772
    [4] 徐灵基, 杨益新, 杨龙. 水下线谱噪声源识别的波束域时频分析方法研究. 物理学报, 2015, 64(17): 174304. doi: 10.7498/aps.64.174304
    [5] 曲建岭, 王小飞, 高峰, 周玉平, 张翔宇. 基于复数据经验模态分解的噪声辅助信号分解方法. 物理学报, 2014, 63(11): 110201. doi: 10.7498/aps.63.110201
    [6] 宋玉来, 卢奂采, 金江明. 单层传声器阵列信号空间重采样的声波分离方法. 物理学报, 2014, 63(19): 194305. doi: 10.7498/aps.63.194305
    [7] 王文波, 汪祥莉. 噪声模态单元预判的经验模态分解脉冲星信号消噪. 物理学报, 2013, 62(20): 209701. doi: 10.7498/aps.62.209701
    [8] 毕传兴, 胡定玉, 张永斌, 徐亮. 基于等效源法和双面质点振速测量的声场分离方法. 物理学报, 2013, 62(8): 084301. doi: 10.7498/aps.62.084301
    [9] 毕传兴, 郭明建, 张永斌, 徐亮. 基于声压梯度参考的部分场分解方法及实验研究. 物理学报, 2012, 61(15): 154301. doi: 10.7498/aps.61.154301
    [10] 时洁, 杨德森, 时胜国. 基于最差性能优化的运动声源稳健聚焦定位识别方法研究. 物理学报, 2011, 60(6): 064301. doi: 10.7498/aps.60.064301
    [11] 徐亮, 毕传兴, 王慧, 许滨, 陈心昭. 全息声压场的加权范数外推方法. 物理学报, 2011, 60(11): 114304. doi: 10.7498/aps.60.114304
    [12] 陈志敏, 朱海潮, 毛荣富. 循环平稳声场的声源定位研究. 物理学报, 2011, 60(10): 104304. doi: 10.7498/aps.60.104304
    [13] 张小正, 毕传兴, 徐亮, 陈心昭. 基于波叠加法的近场声全息空间分辨率增强方法. 物理学报, 2010, 59(8): 5564-5571. doi: 10.7498/aps.59.5564
    [14] 毕传兴, 袁艳, 贺春东, 徐亮. 基于分布源边界点法的局部近场声全息技术. 物理学报, 2010, 59(12): 8646-8654. doi: 10.7498/aps.59.8646
    [15] 毕传兴, 张永斌, 徐亮, 陈心昭. 基于声压-振速测量的平面近场声全息实验研究. 物理学报, 2010, 59(2): 1108-1115. doi: 10.7498/aps.59.1108
    [16] 裴利军, 邱本花. 模态分解法在非恒同耦合系统同步研究中的推广. 物理学报, 2010, 59(1): 164-170. doi: 10.7498/aps.59.164
    [17] 张永斌, 徐亮, 毕传兴, 陈心昭. 基于声压-振速测量的单面声场分离技术. 物理学报, 2009, 58(12): 8364-8371. doi: 10.7498/aps.58.8364
    [18] 张海滨, 蒋伟康, 万 泉. 适用于循环平稳声场的基于波叠加法的近场声全息技术. 物理学报, 2008, 57(1): 313-321. doi: 10.7498/aps.57.313
    [19] 徐 亮, 毕传兴, 陈 剑, 陈心昭. 基于波叠加法的patch近场声全息及其实验研究. 物理学报, 2007, 56(5): 2776-2783. doi: 10.7498/aps.56.2776
    [20] 李卫兵, 陈 剑, 毕传兴, 陈心昭. 联合波叠加法的全息理论与实验研究. 物理学报, 2006, 55(3): 1264-1270. doi: 10.7498/aps.55.1264
计量
  • 文章访问数:  5494
  • PDF下载量:  262
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-01
  • 修回日期:  2016-10-04
  • 刊出日期:  2017-01-05

/

返回文章
返回