搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平面超透镜的远场超衍射极限聚焦和成像研究进展

秦飞 洪明辉 曹耀宇 李向平

引用本文:
Citation:

平面超透镜的远场超衍射极限聚焦和成像研究进展

秦飞, 洪明辉, 曹耀宇, 李向平

Advances in the far-field sub-diffraction limit focusing and super-resolution imaging by planar metalenses

Qin Fei, Hong Ming-Hui, Cao Yao-Yu, Li Xiang-Ping
PDF
导出引用
  • 突破瑞利衍射极限,实现纯光学的远场超衍射极限聚焦和成像在科学和工程的各个领域都有重要意义.现有光学超分辨技术都存在一些固有的限制因素,如工作距离短、适用领域窄、不利于集成等问题.平面超透镜由于理论上的创新、设计灵活、效率高、方便集成等优势,成为实现超衍射极限的有效途径.本文综述了平面超透镜的物理原理及其在超衍射极限聚焦和成像方面近年来的研究进展,并讨论了该领域面临的问题和未来的研究重点和方向.
    Due to the fundamental laws of wave optics, the spatial resolution of traditional optical microscopy is limited by the Rayleigh criterion. Enormous efforts have been made in the past decades to break through the diffraction limit barrier and in depth understand the dynamic processes and static properties. A growing array of super-resolution techniques by distinct approaches have been invented, which can be assigned to two categories: near-field and far-field super-resolution techniques. The near-field techniques, including near-field scanning optical microscopy, superlens, hyperlens, etc., could break through the diffraction limit and realize super-resolution imaging by collecting and modulating the evanescent wave. However, near-field technique suffers a limitation of very short working distances because of the confined propagation distance of evanescent wave, and certainly produces a mechanical damage to the specimen. The super-resolution fluorescence microscopy methods, such as STED, STORM, PALM, etc., could successfully surpass the diffractive limit in far field by selectively activating or deactivating fluorophores rooted in the nonlinear response to excitation light. But those techniques heavily rely on the properties of the fluorophores, and the labelling process makes them only suitable for narrow class samples. Developing a novel approach which could break through the diffraction limit in far field without any near-field operation or labelling processes is of significance for not only scientific research but also industrial production. Recently, the planar metalenses emerge as a promising approach, owing to the theoretical innovation, flexible design, and merits of high efficiency, integratable and so forth. In this review, the most recent progress of planar metalenses is briefly summarized in the aspects of sub-diffractive limit focusing and super-resolution imaging. In addition, the challenge to transforming this academic concept into practical applications, and the future development in the field of planar metalenses are also discussed briefly.
      Corresponding author: Hong Ming-Hui, elehmh@nus.edu.sg;xiangpingli@jnu.edu.cn ; Li Xiang-Ping, elehmh@nus.edu.sg;xiangpingli@jnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61522504).
    [1]

    Airy G B 1835 Trans. Cambridge Phil. Soc. 5 283

    [2]

    Rayleigh L 1874 Philos. Mag. Ser. 47 81

    [3]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [4]

    Liu Z W, Wei Q H, Zhang X 2005 Nano Lett. 5 957

    [5]

    Zhang X, Liu Z 2008 Nat. Mater. 7 435

    [6]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [7]

    Lu D, Liu Z 2012 Nat. Commun. 3 1205

    [8]

    Jacob Z, Alekseyev L V, Narimanov E 2006 Opt. Express 14 8247

    [9]

    Liu Z, Lee H, Xiong Y, Sun C, Zhang X 2007 Science 315 1686

    [10]

    Hell S W, Wichmann J 1994 Opt. Lett. 19 780

    [11]

    Rittweger E, Han K Y, Irvine S E, Eggeling C, Hell S W 2009 Nat. Photon. 3 144

    [12]

    Willig K I, Rizzoli S O, Westphal V, Jahn R, Hell S W 2006 Nature 440 935

    [13]

    Willig K I, Harke B, Medda R, Hell S W 2007 Nat. Methods 4 915

    [14]

    Shroff H, Galbraith C G, Galbraith J A, Betzig E 2008 Nat. Methods 5 417

    [15]

    Planchon T A, Gao L, Milkie D E, Davidson M W, Galbraith J A, Galbraith C G, Betzig E 2011 Nat. Methods 8 417

    [16]

    Bates M, Huang B, Dempsey G T, Zhuang X 2007 Science 317 1749

    [17]

    Rust M J, Bates M, Zhuang X 2006 Nat. Methods 3 793

    [18]

    Yan Y, Li L, Feng C, Guo W, Lee S, Hong M 2014 ACS Nano 8 1809

    [19]

    Wang Z, Guo W, Li L, Luk'yanchuk B, Khan A, Liu Z, Chen Z, Hong M 2011 Nat. Commun. 2 218

    [20]

    Putten E G, Akbulut D, Bertolotti J, Vos W L, Lagendijk A, Mosk A P 2011 Phys. Rev. Lett. 106 193905

    [21]

    Xie X, Chen Y, Yang K, Zhou J 2014 Phys. Rev. Lett. 113 263901

    [22]

    Hao X, Kuang C, Gu Z, Wang Y, Li S, Ku Y, Li Y, Ge J, Liu X 2013 Light Sci. Appl. 2 e108

    [23]

    Francia G T 1952 Nuovo Cimento. Suppl. 9 426

    [24]

    Li X, Venugopalan P, Ren H, Hong M, Gu M 2014 Opt. Lett. 39 5961

    [25]

    Li X, Cao Y, Gu M 2011 Opt. Lett. 36 2510

    [26]

    Chen X, Huang L, Muhlenbernd H, Li G, Bai B, Tan Q, Jin G, Qiu C W, Zhang S, Zentgraf T 2012 Nature Commun. 3 1198

    [27]

    Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F 2016 Science 352 1190

    [28]

    Ni X, Ishii S, Kildishev A V, Shalaev V M 2013 Light Sci. Appl. 2 e72

    [29]

    Lin D, Fan P, Hasman E, Brongersma M L 2014 Science 345 298

    [30]

    Wang C, Tang D, Wang Y, Zhao Z, Wang J, Pu M, Zhang Y, Yan W, Gao P, Luo X 2015 Sci. Rep. 5 18485

    [31]

    Qin F, Huang K, Wu J, Teng J, Qiu C W, Hong M 2017 Adv. Mater. 29 1602721

    [32]

    Rogers E T F, Savo S, Lindberg J, Roy T, Dennis M R, Zheludev N I 2013 Appl. Phys. Lett. 102 031108

    [33]

    Wang J, Qin F, Zhang D H, Li D, Wang Y, Shen X, Yu T, Teng J 2013 Appl. Phys. Lett. 102 061103

    [34]

    Huang K, Ye H, Teng J, Yeo S P, Luk'yanchuk B, Qiu C 2014 Laser Photon. Rev. 8 152

    [35]

    Rogers E T, Lindberg J, Roy T, Savo S, Chad J E, Dennis M R, Zheludev N I 2012 Nat. Mater. 11 432

    [36]

    Qin F, Huang K, Wu J, Jiao J, Luo X, Qiu C, Hong M 2015 Sci. Rep. 5 9977

    [37]

    Yuan G, Rogers E T, Roy T, Adamo G, Shen Z, Zheludev N I 2014 Sci. Rep. 4 6333

    [38]

    Qin F, Hong M 2017 Sci. China: Phys. Mech. 60 044231

    [39]

    Chao W, Harteneck B D, Liddle J A, Anderson E H, Attwood D T 2005 Nature 435 1210

    [40]

    Zheng R, Jiang L, Feldman M 2006 J. Vac. Sci. Technol. B 24 2844

    [41]

    Chen G, Zhang K, Yu A, Wang X, Zhang Z, Li Y, Wen Z, Li C, Dai L, Jiang S, Lin F 2016 Opt. Express 24 11002

    [42]

    Ye H, Qiu C W, Huang K, Teng J, Luk'yanchuk B, Yeo S P 2013 Laser Phys. Lett. 10 065004

    [43]

    Aharonov Y, Albert D Z, Vaidman L 1988 Phys. Rev. Lett. 60 1351

    [44]

    Berry M V, Popescu S 2006 J. Phys. A 39 6965

    [45]

    Berry M V 2013 J. Phys. A 46 205203

    [46]

    Huang F M, Chen Y, Garcia de Abajo F J, Zheludev N I 2007 J. Opt. A: Pure Appl. Opt. 9 S285

    [47]

    Huang F M, Zheludev N, Chen Y, Garcia de Abajo F J 2007 Appl. Phys. Lett. 90 091119

    [48]

    Huang F M, Kao T S, Fedotov V A, Chen Y, Zheludev N I 2008 Nano Lett. 8 2469

    [49]

    Huang F M, Zheludev N I 2009 Nano Lett. 9 1249

    [50]

    Martınez-Corral M, Andres P, Zapata-Rodrıguez C J, Kowalczyk M 1999 Opt. Commun. 165 267

    [51]

    Wang H, Shi L, Lukyanchuk B, Sheppard C, Chong C T 2008 Nat. Photon. 2 501

    [52]

    Liu T, Shen T, Yang S, Jiang Z 2015 J. Opt. 17 035610

    [53]

    Davis B J, Karl W C, Swan A K, Unlu M S, Goldberg B B 2004 Opt. Express 12 4150

    [54]

    Liu T, Tan J, Liu J 2010 Opt. Express 18 2822

    [55]

    Tian B, Pu J 2011 Opt. Lett. 36 2014

    [56]

    Liu T, Tan J, Liu J, Lin J 2013 J. Mod. Opt. 60 378

    [57]

    Rogers E T F, Zheludev N I 2013 J. Opt. 15 094008

    [58]

    Roy T, Rogers E T F, Zheludev N I 2013 Opt. Express 21 7577

    [59]

    Roy T, Rogers E T F, Yuan G, Zheludev N I 2014 Appl. Phys. Lett. 104 231109

    [60]

    Yuan G, Rogers E T, Roy T, Shen Z, Zheludev N I 2014 Opt. Express 22 6428

    [61]

    Yuan G, Vezzoli S, Altuzarra C, Rogers E T, Couteau C, Soci C, Zheludev N I 2016 Light Sci. Appl. 5 e16127

    [62]

    Wang Q, Rogers E T F, Gholipour B, Wang C M, Yuan G, Teng J, Zheludev N I 2015 Nat. Photon. 10 60

    [63]

    Zheng X, Jia B, Lin H, Qiu L, Li D, Gu M 2015 Nat. Commun. 6 8433

    [64]

    Yuan G, Rogers E T, Zheludev N I 2017 Light Sci. Appl. (In Press) doi: 101038/lsa.201736

    [65]

    Aieta F, Genevet P, Yu N, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 1702

    [66]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [67]

    Ni X, Kildishev A V, Shalaev V M 2013 Nat. Commun. 4 2807

    [68]

    Zheng G, Mhlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S 2015 Nat. Nanotech. 10 308

    [69]

    Zhang L, Mei S, Huang K, Qiu C W 2016 Adv. Opt. Mater. 4 818

    [70]

    Huang K, Dong Z, Mei S, Zhang L, Liu Y, Liu H, Zhu H, Teng J, Luk'yanchuk B, Yang J K W, Qiu C W 2016 Laser Photon. Rev. 10 500

    [71]

    Qin F, Ding L, Zhang L, Monticone F, Chum C C, Deng J, Mei S, Li Y, Teng J, Hong M, Zhang S, Al A, Qiu C W 2016 Sci. Adv. 2 e1501168

    [72]

    Chu C H, Tseng M L, Chen J, Wu P C, Chen Y H, Wang H C, Chen T Y, Hsieh W T, Wu H J, Sun G, Tsai D P 2016 Laser Photon. Rev. 10 986

    [73]

    Wu P C, Tsai W Y, Chen W T, Huang Y W, Chen T Y, Chen J W, Liao C Y, Chu C H, Sun G, Tsai D P 2017 Nano Lett. 17 445

    [74]

    Tang D, Wang C, Zhao Z, Wang Y, Pu M, Li X, Gao P, Luo X 2015 Laser Photon. Rev. 9 713

    [75]

    Luo X 2015 Sci. China: Phys. Mech. 58 594201

    [76]

    Khorasaninejad M, Zhu A Y, Roques-Carmes C, Chen W T, Oh J, Mishra I, Devlin R C, Capasso F 2016 Nano Lett. 16 7229

    [77]

    Khorasaninejad M, Chen W T, Zhu A Y, Oh J, Devlin R C, Rousso D, Capasso F 2016 Nano Lett. 16 4595

    [78]

    Arbabi A, Horie Y, Ball A J, Bagheri M, Faraon A 2015 Nat. Commun. 6 7069

    [79]

    Arbabi A, Arbabi E, Kamali S M, Horie Y, Han S, Faraon A 2016 Nat. Commun. 7 13682

  • [1]

    Airy G B 1835 Trans. Cambridge Phil. Soc. 5 283

    [2]

    Rayleigh L 1874 Philos. Mag. Ser. 47 81

    [3]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [4]

    Liu Z W, Wei Q H, Zhang X 2005 Nano Lett. 5 957

    [5]

    Zhang X, Liu Z 2008 Nat. Mater. 7 435

    [6]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [7]

    Lu D, Liu Z 2012 Nat. Commun. 3 1205

    [8]

    Jacob Z, Alekseyev L V, Narimanov E 2006 Opt. Express 14 8247

    [9]

    Liu Z, Lee H, Xiong Y, Sun C, Zhang X 2007 Science 315 1686

    [10]

    Hell S W, Wichmann J 1994 Opt. Lett. 19 780

    [11]

    Rittweger E, Han K Y, Irvine S E, Eggeling C, Hell S W 2009 Nat. Photon. 3 144

    [12]

    Willig K I, Rizzoli S O, Westphal V, Jahn R, Hell S W 2006 Nature 440 935

    [13]

    Willig K I, Harke B, Medda R, Hell S W 2007 Nat. Methods 4 915

    [14]

    Shroff H, Galbraith C G, Galbraith J A, Betzig E 2008 Nat. Methods 5 417

    [15]

    Planchon T A, Gao L, Milkie D E, Davidson M W, Galbraith J A, Galbraith C G, Betzig E 2011 Nat. Methods 8 417

    [16]

    Bates M, Huang B, Dempsey G T, Zhuang X 2007 Science 317 1749

    [17]

    Rust M J, Bates M, Zhuang X 2006 Nat. Methods 3 793

    [18]

    Yan Y, Li L, Feng C, Guo W, Lee S, Hong M 2014 ACS Nano 8 1809

    [19]

    Wang Z, Guo W, Li L, Luk'yanchuk B, Khan A, Liu Z, Chen Z, Hong M 2011 Nat. Commun. 2 218

    [20]

    Putten E G, Akbulut D, Bertolotti J, Vos W L, Lagendijk A, Mosk A P 2011 Phys. Rev. Lett. 106 193905

    [21]

    Xie X, Chen Y, Yang K, Zhou J 2014 Phys. Rev. Lett. 113 263901

    [22]

    Hao X, Kuang C, Gu Z, Wang Y, Li S, Ku Y, Li Y, Ge J, Liu X 2013 Light Sci. Appl. 2 e108

    [23]

    Francia G T 1952 Nuovo Cimento. Suppl. 9 426

    [24]

    Li X, Venugopalan P, Ren H, Hong M, Gu M 2014 Opt. Lett. 39 5961

    [25]

    Li X, Cao Y, Gu M 2011 Opt. Lett. 36 2510

    [26]

    Chen X, Huang L, Muhlenbernd H, Li G, Bai B, Tan Q, Jin G, Qiu C W, Zhang S, Zentgraf T 2012 Nature Commun. 3 1198

    [27]

    Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F 2016 Science 352 1190

    [28]

    Ni X, Ishii S, Kildishev A V, Shalaev V M 2013 Light Sci. Appl. 2 e72

    [29]

    Lin D, Fan P, Hasman E, Brongersma M L 2014 Science 345 298

    [30]

    Wang C, Tang D, Wang Y, Zhao Z, Wang J, Pu M, Zhang Y, Yan W, Gao P, Luo X 2015 Sci. Rep. 5 18485

    [31]

    Qin F, Huang K, Wu J, Teng J, Qiu C W, Hong M 2017 Adv. Mater. 29 1602721

    [32]

    Rogers E T F, Savo S, Lindberg J, Roy T, Dennis M R, Zheludev N I 2013 Appl. Phys. Lett. 102 031108

    [33]

    Wang J, Qin F, Zhang D H, Li D, Wang Y, Shen X, Yu T, Teng J 2013 Appl. Phys. Lett. 102 061103

    [34]

    Huang K, Ye H, Teng J, Yeo S P, Luk'yanchuk B, Qiu C 2014 Laser Photon. Rev. 8 152

    [35]

    Rogers E T, Lindberg J, Roy T, Savo S, Chad J E, Dennis M R, Zheludev N I 2012 Nat. Mater. 11 432

    [36]

    Qin F, Huang K, Wu J, Jiao J, Luo X, Qiu C, Hong M 2015 Sci. Rep. 5 9977

    [37]

    Yuan G, Rogers E T, Roy T, Adamo G, Shen Z, Zheludev N I 2014 Sci. Rep. 4 6333

    [38]

    Qin F, Hong M 2017 Sci. China: Phys. Mech. 60 044231

    [39]

    Chao W, Harteneck B D, Liddle J A, Anderson E H, Attwood D T 2005 Nature 435 1210

    [40]

    Zheng R, Jiang L, Feldman M 2006 J. Vac. Sci. Technol. B 24 2844

    [41]

    Chen G, Zhang K, Yu A, Wang X, Zhang Z, Li Y, Wen Z, Li C, Dai L, Jiang S, Lin F 2016 Opt. Express 24 11002

    [42]

    Ye H, Qiu C W, Huang K, Teng J, Luk'yanchuk B, Yeo S P 2013 Laser Phys. Lett. 10 065004

    [43]

    Aharonov Y, Albert D Z, Vaidman L 1988 Phys. Rev. Lett. 60 1351

    [44]

    Berry M V, Popescu S 2006 J. Phys. A 39 6965

    [45]

    Berry M V 2013 J. Phys. A 46 205203

    [46]

    Huang F M, Chen Y, Garcia de Abajo F J, Zheludev N I 2007 J. Opt. A: Pure Appl. Opt. 9 S285

    [47]

    Huang F M, Zheludev N, Chen Y, Garcia de Abajo F J 2007 Appl. Phys. Lett. 90 091119

    [48]

    Huang F M, Kao T S, Fedotov V A, Chen Y, Zheludev N I 2008 Nano Lett. 8 2469

    [49]

    Huang F M, Zheludev N I 2009 Nano Lett. 9 1249

    [50]

    Martınez-Corral M, Andres P, Zapata-Rodrıguez C J, Kowalczyk M 1999 Opt. Commun. 165 267

    [51]

    Wang H, Shi L, Lukyanchuk B, Sheppard C, Chong C T 2008 Nat. Photon. 2 501

    [52]

    Liu T, Shen T, Yang S, Jiang Z 2015 J. Opt. 17 035610

    [53]

    Davis B J, Karl W C, Swan A K, Unlu M S, Goldberg B B 2004 Opt. Express 12 4150

    [54]

    Liu T, Tan J, Liu J 2010 Opt. Express 18 2822

    [55]

    Tian B, Pu J 2011 Opt. Lett. 36 2014

    [56]

    Liu T, Tan J, Liu J, Lin J 2013 J. Mod. Opt. 60 378

    [57]

    Rogers E T F, Zheludev N I 2013 J. Opt. 15 094008

    [58]

    Roy T, Rogers E T F, Zheludev N I 2013 Opt. Express 21 7577

    [59]

    Roy T, Rogers E T F, Yuan G, Zheludev N I 2014 Appl. Phys. Lett. 104 231109

    [60]

    Yuan G, Rogers E T, Roy T, Shen Z, Zheludev N I 2014 Opt. Express 22 6428

    [61]

    Yuan G, Vezzoli S, Altuzarra C, Rogers E T, Couteau C, Soci C, Zheludev N I 2016 Light Sci. Appl. 5 e16127

    [62]

    Wang Q, Rogers E T F, Gholipour B, Wang C M, Yuan G, Teng J, Zheludev N I 2015 Nat. Photon. 10 60

    [63]

    Zheng X, Jia B, Lin H, Qiu L, Li D, Gu M 2015 Nat. Commun. 6 8433

    [64]

    Yuan G, Rogers E T, Zheludev N I 2017 Light Sci. Appl. (In Press) doi: 101038/lsa.201736

    [65]

    Aieta F, Genevet P, Yu N, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 1702

    [66]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [67]

    Ni X, Kildishev A V, Shalaev V M 2013 Nat. Commun. 4 2807

    [68]

    Zheng G, Mhlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S 2015 Nat. Nanotech. 10 308

    [69]

    Zhang L, Mei S, Huang K, Qiu C W 2016 Adv. Opt. Mater. 4 818

    [70]

    Huang K, Dong Z, Mei S, Zhang L, Liu Y, Liu H, Zhu H, Teng J, Luk'yanchuk B, Yang J K W, Qiu C W 2016 Laser Photon. Rev. 10 500

    [71]

    Qin F, Ding L, Zhang L, Monticone F, Chum C C, Deng J, Mei S, Li Y, Teng J, Hong M, Zhang S, Al A, Qiu C W 2016 Sci. Adv. 2 e1501168

    [72]

    Chu C H, Tseng M L, Chen J, Wu P C, Chen Y H, Wang H C, Chen T Y, Hsieh W T, Wu H J, Sun G, Tsai D P 2016 Laser Photon. Rev. 10 986

    [73]

    Wu P C, Tsai W Y, Chen W T, Huang Y W, Chen T Y, Chen J W, Liao C Y, Chu C H, Sun G, Tsai D P 2017 Nano Lett. 17 445

    [74]

    Tang D, Wang C, Zhao Z, Wang Y, Pu M, Li X, Gao P, Luo X 2015 Laser Photon. Rev. 9 713

    [75]

    Luo X 2015 Sci. China: Phys. Mech. 58 594201

    [76]

    Khorasaninejad M, Zhu A Y, Roques-Carmes C, Chen W T, Oh J, Mishra I, Devlin R C, Capasso F 2016 Nano Lett. 16 7229

    [77]

    Khorasaninejad M, Chen W T, Zhu A Y, Oh J, Devlin R C, Rousso D, Capasso F 2016 Nano Lett. 16 4595

    [78]

    Arbabi A, Horie Y, Ball A J, Bagheri M, Faraon A 2015 Nat. Commun. 6 7069

    [79]

    Arbabi A, Arbabi E, Kamali S M, Horie Y, Han S, Faraon A 2016 Nat. Commun. 7 13682

  • [1] 罗泽伟, 武戈, 陈挚, 邓驰楠, 万蓉, 杨涛, 庄正飞, 陈同生. 双通道结构光照明超分辨定量荧光共振能量转移成像系统. 物理学报, 2023, 72(20): 208701. doi: 10.7498/aps.72.20230853
    [2] 谷同凯, 王兰兰, 国阳, 蒋维涛, 史永胜, 杨硕, 陈金菊, 刘红忠. 光盘上集成的液体微透镜阵列与可重构超分辨成像. 物理学报, 2023, 72(9): 099501. doi: 10.7498/aps.72.20222251
    [3] 王佳林, 严伟, 张佳, 王璐玮, 杨志刚, 屈军乐. 受激辐射损耗超分辨显微成像系统研究的新进展. 物理学报, 2020, 69(10): 108702. doi: 10.7498/aps.69.20200168
    [4] 刘康, 何韬, 刘涛, 李国卿, 田博, 王佳怡, 杨树明. 激光照明条件对超振荡平面透镜聚焦性能的影响. 物理学报, 2020, 69(18): 184215. doi: 10.7498/aps.69.20200577
    [5] 范启蒙, 尹成友. 高对比度目标的电磁逆散射超分辨成像. 物理学报, 2018, 67(14): 144101. doi: 10.7498/aps.67.20180266
    [6] 赵天宇, 周兴, 但旦, 千佳, 汪召军, 雷铭, 姚保利. 结构光照明显微中的偏振控制. 物理学报, 2017, 66(14): 148704. doi: 10.7498/aps.66.148704
    [7] 李少东, 陈永彬, 刘润华, 马晓岩. 基于压缩感知的窄带高速自旋目标超分辨成像物理机理分析. 物理学报, 2017, 66(3): 038401. doi: 10.7498/aps.66.038401
    [8] 赵光远, 郑程, 方月, 匡翠方, 刘旭. 基于点扫描的超分辨显微成像进展. 物理学报, 2017, 66(14): 148702. doi: 10.7498/aps.66.148702
    [9] 陈刚, 温中泉, 武志翔. 光学超振荡与超振荡光学器件. 物理学报, 2017, 66(14): 144205. doi: 10.7498/aps.66.144205
    [10] 胡睿璇, 潘冰洋, 杨玉龙, 张伟华. 基于线性成像系统的光学超分辨显微术回顾. 物理学报, 2017, 66(14): 144209. doi: 10.7498/aps.66.144209
    [11] 高斯, 王子涵, 滑建冠, 李乾坤, 李爱武, 于颜豪. 飞秒激光加工蓝宝石超衍射纳米结构. 物理学报, 2017, 66(14): 147901. doi: 10.7498/aps.66.147901
    [12] 蒋忠君, 刘建军. 超振荡及其远场聚焦成像研究进展. 物理学报, 2016, 65(23): 234203. doi: 10.7498/aps.65.234203
    [13] 李少东, 陈文峰, 杨军, 马晓岩. 低信噪比下的二维联合线性布雷格曼迭代快速超分辨成像算法. 物理学报, 2016, 65(3): 038401. doi: 10.7498/aps.65.038401
    [14] 陈礼诚, 张冬仙, 章海军, 王旭龙琦. 基于微纳结构与金属纳米层的颜色调控技术研究. 物理学报, 2015, 64(3): 038102. doi: 10.7498/aps.64.038102
    [15] 李龙珍, 姚旭日, 刘雪峰, 俞文凯, 翟光杰. 基于压缩感知超分辨鬼成像. 物理学报, 2014, 63(22): 224201. doi: 10.7498/aps.63.224201
    [16] 支绍韬, 章海军, 张冬仙. 基于大数值孔径环形光锥照明的超分辨光学显微成像方法研究. 物理学报, 2012, 61(2): 024207. doi: 10.7498/aps.61.024207
    [17] 卢婧, 李昊, 何毅, 史国华, 张雨东. 超分辨率活体人眼视网膜共焦扫描成像系统. 物理学报, 2011, 60(3): 034207. doi: 10.7498/aps.60.034207
    [18] 孙金霞, 孙 强, 李东熙, 卢振武. 利用衍射光学元件进行共形整流罩像差校正的研究. 物理学报, 2007, 56(7): 3900-3905. doi: 10.7498/aps.56.3900
    [19] 刘世杰, 沈 健, 沈自才, 孔伟金, 魏朝阳, 晋云霞, 邵建达, 范正修. 多层介质膜脉冲压缩光栅近场光学特性分析. 物理学报, 2006, 55(9): 4588-4594. doi: 10.7498/aps.55.4588
    [20] 赵维谦, 陈珊珊, 冯政德. 图像复原式整形环形光横向超分辨共焦显微测量新方法. 物理学报, 2006, 55(7): 3363-3367. doi: 10.7498/aps.55.3363
计量
  • 文章访问数:  8969
  • PDF下载量:  1013
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-09
  • 修回日期:  2017-05-31
  • 刊出日期:  2017-07-05

/

返回文章
返回