搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多维温度场对光纤环Shupe效应误差影响的理论分析

卓超 杜建邦

引用本文:
Citation:

多维温度场对光纤环Shupe效应误差影响的理论分析

卓超, 杜建邦

Shupe effect of fiber sensing coils in multidimensional thermal field

Zhuo Chao, Du Jian-Bang
PDF
导出引用
  • 光纤环作为干涉型光纤陀螺的核心敏感元件,易受时变温度环境引起的Shupe非互易性相移的影响,进而严重降低对于惯性空间转动的测量精度.本文推导了目前广泛应用的四极绕法光纤环的温度效应误差模型,分析了沿光纤环径向、轴向与圆周方向多维温度场对于零偏漂移的影响机理并进行了仿真验证.研究结果表明,径向与轴向的瞬态温场引起的零偏误差正比于光纤环各层外内壁温变速率之差的加权和,并且随着接近光纤进出的顶层,其所占份额将线性增大.圆周方向的零偏误差则取决于光纤进出端与长度中点连线两侧温变速率空间分布的对称性,并且当不均匀的温度场分布远离进出端时,其影响将减小.以上发现可为复杂温度环境下工作的陀螺仪表与惯性导航系统的热结构设计提供理论指导与工程参考.
    Optical fibers have a wide range of applications and constitute the core of fiber-optic gyroscope which is revolutionizing the ancient inertial rotation detection. However, fiber coils in these instruments are susceptible to surrounding physical quantities, which can seriously deteriorate their accuracy. And the thermally induced parasitic effect is one of the most critical factors leading to the bias drift. This drift error is due to the nonreciprocity phase shift in the counter-propagating optical loops when a thermal gradient passes through the fiber coil as described by Shupe. The quadrupole winding patterns along with other coiling schemes have been proposed to reduce the Shupe effect by maintaining fiber parts at equal distances from the coil center beside each other. Many researchers have investigated the thermal effect on this drift on the assumption that the temperature transient propagates only radially along the fiber coil, while little attention has been paid to the case of the multidimensional thermal field. This can hardly satisfy completeness of the theory, and be applied to certain complicated working conditions. In this paper, we develop theoretical models that describe drift signals caused by radially, axially and circumferentially transmitted thermal effects on the quadrupole winding fiber coil. The obtained findings indicate that the bias error excited by the thermal flow in radial and axial directions is proportional to the weighted sum of the difference in temperature changing rate between outer and inner sides of the fiber ring. And the share of the sum linearly grows when approaching to the top surface near the input and output end (I/O end) of the fiber. Thus, it is suggested that it should be avoided to place heat sources in the neighboring area. For the circumferentially distributed temperature field, the drift depends on the symmetry of the thermal gradients on both sides of the centerline connecting the fiber midpoint and the I/O end. This circumferential thermal effect can be dominant, since it tends to cover a larger spatial scale than its counterparts in radial and axial directions. And besides making a good symmetrical design of the temperature distribution with respect to the centerline, it can be suppressed by arranging the nonuniformity of the thermal field in the opposite direction of the fiber coil to the I/O end, which is also beneficial to reducing its sensitivity to the angular change. Our results can help better understand the mechanisms for the thermal error formation and guide us in optimizing and facilitating the thermo-structure design of both fiber gyroscopes and navigation systems.
      通信作者: 卓超, ngjyzc@126.com
    • 基金项目: 国家自然科学基金(批准号:61603365)资助的课题.
      Corresponding author: Zhuo Chao, ngjyzc@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61603365).
    [1]

    Vali V, Shorthill R W 1976 Appl. Opt. 15 1099

    [2]

    Paturel Y, Honthaas J, Lefevre H, Napolitano F 2014 Gyroscopy and Navigation 5 1

    [3]

    Webber M, Willig R, Raczkowski H, Dineen A 2012 J. Lightwave Technol. 30 2356

    [4]

    Wen F, Wu B J, Li Z, Li S B 2013 Acta Phys. Sin. 62 130701(in Chinese) [文峰, 武保剑, 李智, 李述标 2013 物理学报 62 130701]

    [5]

    Jin J, Li Y, Zhang Z C, Wu C X, Song N F 2016 Chin. Phys.. 25 084213

    [6]

    L X Q, Huang X Y, Gao F, Wang X F 2015 J. Chin. Inertial Technol. 23 399(in Chinese) [闾晓琴, 黄鑫岩, 高峰, 王学锋 2015 中国惯性技术学报 23 399]

    [7]

    Shupe D M 1980 Appl. Opt. 19 654

    [8]

    Frigo N J 1983 Proc. SPIE 412 268

    [9]

    Dyott R B 1996 Electron. Lett. 32 2177

    [10]

    Williams M R 2008 US Patent 2008/0130010

    [11]

    Tirat O F J, Euverte J M 1996 Proc. SPIE 2837 230

    [12]

    Zhang C X, Du S S, Jin J, Zhang Z G 2011 Optik 122 20

    [13]

    Zhang Y G, Gao Z X, Wang G C, Gao W 2014 IEEE Photo.Tech. Lett. 26 18

    [14]

    Ling W W, Li X Y, Xu Z L, Zhang Z Y, Wei Y H 2015 Opt. Commun. 356 290

    [15]

    Mohr F 1996 J. Lightwave Technol. 14 27

    [16]

    Li Z H, Meng Z, Liu T G, Yao X S 2013 Opt. Express 21 2521

    [17]

    Sawyer J, Ruffin P B, Sung C C 1997 Opt. Eng. 36 29

    [18]

    Lefevre H C 2014 The Fiber-Optic Gyroscope (2nd Ed.) (Boston, London: Artech House) pp98-99

  • [1]

    Vali V, Shorthill R W 1976 Appl. Opt. 15 1099

    [2]

    Paturel Y, Honthaas J, Lefevre H, Napolitano F 2014 Gyroscopy and Navigation 5 1

    [3]

    Webber M, Willig R, Raczkowski H, Dineen A 2012 J. Lightwave Technol. 30 2356

    [4]

    Wen F, Wu B J, Li Z, Li S B 2013 Acta Phys. Sin. 62 130701(in Chinese) [文峰, 武保剑, 李智, 李述标 2013 物理学报 62 130701]

    [5]

    Jin J, Li Y, Zhang Z C, Wu C X, Song N F 2016 Chin. Phys.. 25 084213

    [6]

    L X Q, Huang X Y, Gao F, Wang X F 2015 J. Chin. Inertial Technol. 23 399(in Chinese) [闾晓琴, 黄鑫岩, 高峰, 王学锋 2015 中国惯性技术学报 23 399]

    [7]

    Shupe D M 1980 Appl. Opt. 19 654

    [8]

    Frigo N J 1983 Proc. SPIE 412 268

    [9]

    Dyott R B 1996 Electron. Lett. 32 2177

    [10]

    Williams M R 2008 US Patent 2008/0130010

    [11]

    Tirat O F J, Euverte J M 1996 Proc. SPIE 2837 230

    [12]

    Zhang C X, Du S S, Jin J, Zhang Z G 2011 Optik 122 20

    [13]

    Zhang Y G, Gao Z X, Wang G C, Gao W 2014 IEEE Photo.Tech. Lett. 26 18

    [14]

    Ling W W, Li X Y, Xu Z L, Zhang Z Y, Wei Y H 2015 Opt. Commun. 356 290

    [15]

    Mohr F 1996 J. Lightwave Technol. 14 27

    [16]

    Li Z H, Meng Z, Liu T G, Yao X S 2013 Opt. Express 21 2521

    [17]

    Sawyer J, Ruffin P B, Sung C C 1997 Opt. Eng. 36 29

    [18]

    Lefevre H C 2014 The Fiber-Optic Gyroscope (2nd Ed.) (Boston, London: Artech House) pp98-99

  • [1] 王浩, 曹珊珊, 苏俊豪, 徐海涛, 王震, 郑加金, 韦玮. 基于双包层光纤布拉格光栅传感器的锂电池组温度场监控. 物理学报, 2022, 71(10): 104207. doi: 10.7498/aps.71.20212302
    [2] 单良, 赵腾飞, 黄荟云, 洪波, 孔明. 基于阻尼LSQR-LMBC的火焰三维温度场重建. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211421
    [3] 郭富城, 李翠, 厉彦忠. 定向红外条件下光纤布置形式及光源参数对低温靶温度场的影响. 物理学报, 2021, 70(16): 160703. doi: 10.7498/aps.70.20210029
    [4] 杨易, 徐贲, 刘亚铭, 李萍, 王东宁, 赵春柳. 基于游标效应的增敏型光纤法布里-珀罗干涉仪温度传感器. 物理学报, 2017, 66(9): 094205. doi: 10.7498/aps.66.094205
    [5] 兰忠, 朱霞, 彭本利, 林勐, 马学虎. 滴状冷凝过程液滴自由表面温度场分析. 物理学报, 2012, 61(15): 150508. doi: 10.7498/aps.61.150508
    [6] 颜鹏程, 侯威, 钱忠华, 何文平, 孙建安. 基于贝叶斯理论的全球海温异常对500 hPa 温度场的影响分析. 物理学报, 2012, 61(13): 139202. doi: 10.7498/aps.61.139202
    [7] 石玗, 韩日宏, 黄健康, 樊丁. 旁路耦合电弧焊温度场模拟及验证. 物理学报, 2012, 61(2): 020205. doi: 10.7498/aps.61.020205
    [8] 支蓉, 龚志强, 王启光, 熊开国. 时间滞后对全球温度场关联性的影响. 物理学报, 2011, 60(8): 089202. doi: 10.7498/aps.60.089202
    [9] 刘冬, 严建华, 王飞, 黄群星, 池涌, 岑可法. 火焰烟黑三维温度场和浓度场同时重建实验研究. 物理学报, 2011, 60(6): 060701. doi: 10.7498/aps.60.060701
    [10] 冯爱霞, 龚志强, 黄琰, 王启光. 全球温度场信息熵的时空特征分析. 物理学报, 2011, 60(9): 099204. doi: 10.7498/aps.60.099204
    [11] 吴迪, 宫野, 雷明凯, 刘金远, 王晓钢, 刘悦, 马腾才. 高功率离子束辐照膜基双层靶温度场的数值研究. 物理学报, 2010, 59(7): 4826-4830. doi: 10.7498/aps.59.4826
    [12] 黄金哲, 王宏, 常彦琴, 沈涛, Andreev Y. M., Shaiduko A. V.. BBO晶体倍频中的温度场与光场耦合模拟. 物理学报, 2010, 59(9): 6243-6249. doi: 10.7498/aps.59.6243
    [13] 韩奇钢, 马红安, 肖宏宇, 李瑞, 张聪, 李战厂, 田宇, 贾晓鹏. 基于有限元法分析宝石级金刚石的合成腔体温度场. 物理学报, 2010, 59(3): 1923-1927. doi: 10.7498/aps.59.1923
    [14] 刘明强, 李斌成. 光学薄膜样品的温度场和形变场分析. 物理学报, 2008, 57(6): 3402-3409. doi: 10.7498/aps.57.3402
    [15] 苗向蕊, 高士明, 高 莹. 基于光纤四波混频效应的新型组播方法. 物理学报, 2008, 57(12): 7699-7704. doi: 10.7498/aps.57.7699
    [16] 刘 冬, 王 飞, 黄群星, 严建华, 池 涌, 岑可法. 二维弥散介质温度场的快速重建. 物理学报, 2008, 57(8): 4812-4816. doi: 10.7498/aps.57.4812
    [17] 黄群星, 刘 冬, 王 飞, 严建华, 池 涌, 岑可法. 基于截断奇异值分解的三维火焰温度场重建研究. 物理学报, 2007, 56(11): 6742-6748. doi: 10.7498/aps.56.6742
    [18] 周桂耀, 侯峙云, 潘普丰, 侯蓝田, 李曙光, 韩 颖. 微结构光纤预制棒拉制过程的温度场分布. 物理学报, 2006, 55(3): 1271-1275. doi: 10.7498/aps.55.1271
    [19] 王荣, 沈柯. 延时线性反馈法控制双环掺铒光纤激光器混沌. 物理学报, 2001, 50(6): 1024-1027. doi: 10.7498/aps.50.1024
    [20] 王永久, 唐智明. 质量四极矩场中的轨道进动效应. 物理学报, 2001, 50(12): 2284-2288. doi: 10.7498/aps.50.2284
计量
  • 文章访问数:  6383
  • PDF下载量:  211
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-15
  • 修回日期:  2017-09-05
  • 刊出日期:  2018-01-05

/

返回文章
返回