搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拖曳体激发内波时空特性实验及其理论模型

陈科 王宏伟 盛立 尤云祥

引用本文:
Citation:

拖曳体激发内波时空特性实验及其理论模型

陈科, 王宏伟, 盛立, 尤云祥

Theoretical models and experiments for the time-space characteristics of internal waves generated by towed bodies

Chen Ke, Wang Hong-Wei, Sheng Li, You Yun-Xiang
PDF
导出引用
  • 在具有密度跃层的分层流体中,采用沿水槽中纵剖面对称布置电导率探头阵列的方法,对1个球体和2个不同长径比细长体在拖曳运动下激发内波的时空特性进行了系列实验.结果表明:存在一个与长径比近似为线性关系的临界Froude数Frc,当FrFrc时,内波相关速度均与物体运动速度一致,体积效应内波为主控内波,内波波高均随拖曳速度增大而先增大后减小,Lee波峰值对应速度随长径比增大而增大;当FrFrc时,内波相关速度均小于物体运动速度,其相关速度Froude数Friw均在0.431.18之间的一个条带内变化,尾迹效应内波为主控内波,内波波高均随拖曳速度增大而近似线性增大.此外,从波形结构上看,体积效应内波关于水槽中纵剖面是对称的,而尾迹效应内波关于水槽中纵剖面是不对称的.结合上述实验结果,在已有针对拖曳球产生内波的等效源理论模型基础上,针对体积效应内波,提出了不同长径比模型的等效源移动速度和体积的设置方法;针对尾迹效应内波正对称和反对称这一特性,提出了正对称组合源和反对称组合源理论模型及其参数设置方法.所得计算结果在波高、波形结构和波系分布上与实验结果符合良好,表明了所提出的理论模型及其参数设置方法的合理性和有效性.
    In this paper, we perform experiments on the time-space characteristics of internal waves generated by horizontally towed bodies with three aspect ratios in a stratified fluid with a halocline. By the real-time measurements of conductivity probe arrays which are arranged symmetrically in the transverse section of the stratified fluid tank, it is shown that the transition between the body-generated internal wave and the wake-generated internal wave is related to a critical Froude number Frc, which is linearly dependent on the aspect ratio. For FrFrc, the correlation velocities of internal waves are consistent with the towing speeds of the towed bodies, indicating that such internal waves in this range are dominated by the body-forced effect. The heights of such body-generated internal waves first increase with the increase of Fr until Fr reaches a certain value of Frp, which is also linearly dependent on the aspect ratio, and then decrease. For FrFrc, the correlation velocities of internal waves are noticeably lower than the towing speeds, indicating that such internal waves in this range are dominated by the wake-forced effect, and that the Froude numbers with respect to the correlation velocities of such internal waves vary in a range from 0.43 to 1.18. The heights of such wake-generated internal waves nearly linearly increase with Fr increasing regardless of the aspect ratio. Moreover, the patterns of body-generated waves are symmetric, while the patterns of wake-generated waves are not symmetric. Based on the experimental results and the equivalent source method which has been proposed to simulate the internal waves generated by a towed sphere, a new equivalent source method is developed to calculate the internal waves generated by towed slender bodies. For the body-generated waves, the method of designing the speed, length and diameter of the equivalent source is proposed. The symmetrical and anti-symmetrical equivalent source and their speed and size are also proposed for the wake-generated waves. The numerical results are in good accordance with the experimental results in the heights and patterns of waves, indicating that such a theoretical method and its parameter settings are reasonable and effective.
      通信作者: 陈科, raulphan@sjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11072153,11372184)资助的课题.
      Corresponding author: Chen Ke, raulphan@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11072153, 11372184).
    [1]

    Liang J J, Du T, Huang W G, Zeng K, He M X 2016 J. Ship Mech. 20 635 (in Chinese) [梁建军, 杜涛, 黄韦艮, 曾侃, 贺明霞 2016 船舶力学 20 635]

    [2]

    Robey H F 1997 Phys. Fluids 9 3353

    [3]

    Hopfinger E J, Flor J B, Chomaz J M, Bonneton P 1991 Exp. Fluids 11 255

    [4]

    Lin Q, Boyer D L, Fernando H J S 1993 Exp. Fluids 15 147

    [5]

    Chomaz J M, Bonneton P, Hopfinger E J 1993 J. Fluid Mech. 254 1

    [6]

    Bonneton P, Chomaz J M, Hopfinger E J 1993 J. Fluid Mech. 254 23

    [7]

    Wei G, Zhao X Q, Su X B, You Y X 2009 Sci. China: Series G 39 1338 (in Chinese) [魏岗, 赵先奇, 苏晓冰, 尤云祥 2009 中国科学G 39 1338]

    [8]

    Zhao X Q, You Y X, Chen K, Hu T Q, Wei G 2009 J. Shanghai Jiao Tong Univ. 43 1298 (in Chinese) [赵先奇, 尤云祥, 陈科, 胡天群, 魏岗 2009 上海交通大学学报 43 1298]

    [9]

    Wang J, You Y X, Hu T Q, Wang X Q, Zhu M H 2012 Acta Phys. Sin. 61 074701 (in Chinese) [王进, 尤云祥, 胡天群, 王小青, 朱敏慧 2012 物理学报 61 074701]

    [10]

    Wang J, You Y X, Hu T Q, Zhu M H, Wang X Q, Wei G 2012 Chin. Sci. Bull. 57 606 (in Chinese) [王进, 尤云祥, 胡天群, 朱敏慧, 王小青, 魏岗 2012 科学通报 57 606]

    [11]

    Wang H W, Chen K, You Y X, Zhang X S 2017 Chin. Sci. Bull. 62 2132 (in Chinese) [王宏伟, 陈科, 尤云祥, 张新曙 2017 科学通报 62 2132]

    [12]

    Lighthill J 1978 Waves in Fluid (Cambridge: Cambridge University Press) pp23-30

    [13]

    Keller J B, Munk W H 1970 Phys. Fluids 13 1425

    [14]

    Miles J W 1971 Geo. Fluid Dynamics 2 63

    [15]

    Gray E P 1983 Phys. Fluids 26 2919

    [16]

    Voisin B 1994 J. Fluid Mech. 261 333

    [17]

    Yeung R W, Nguyen T C 1999 J. Eng. Math. 35 85

    [18]

    Broutman D, Rottman J, Eckermann S D 2004 Annu. Rev. Fluid Mech. 36 233

    [19]

    Milder M 1974 Internal Waves Radiated by a Moving Source Technical Report (Vol. 1) (Santa Monica: Defense Advanced Research Projects Agency) pp19-25

    [20]

    You Y X, Zhao X Q, Chen K, Wei G 2009 Acta Phys. Sin. 58 6750 (in Chinese) [尤云祥, 赵先奇, 陈科, 魏岗 2009 物理学报 58 6750]

    [21]

    Brandt A, Rottier J R 2015 J. Fluid Mech. 769 103

    [22]

    Lin J T, Pao Y H 1979 Annu. Rev. Fluid Mech. 11 317

    [23]

    Gilreath H E, Brandt A 1985 AIAA J. 23 693

    [24]

    Wei G, Wu N, Xu X H, Su X B, You Y X 2011 Acta Phys. Sin. 60 044704 (in Chinese) [魏岗, 吴宁, 徐小辉, 苏晓冰, 尤云祥 2011 物理学报 60 044704]

    [25]

    Dupont P, Kadri Y, Chomaz J M 2001 Phys. Fluids 13 3223

    [26]

    Druzhinin O A, Papko V V, Sergeev D A, Troitskaya Y I 2006 Izv. Atmos. Ocean. Phys. 42 615

    [27]

    Druzhinin O A 2009 Fluid Dyn. 44 213

    [28]

    Vasholz D P 2011 Theoretical and Computational Fluid Dynamics 25 357

    [29]

    Diamessis P J, Gurka R, Liberzon A 2010 Phys. Fluids 22 086601

    [30]

    Abdilghanie A M, Diamessis P J 2013 J. Fluid Mech. 720 104

    [31]

    Yao Z C, Zhao F, Liang C, Hong F W, Zhang J 2017 J. Ship Mech. 21 8 (in Chinese) [姚志崇, 赵峰, 梁川, 洪方文, 张军 2017 船舶力学 21 8]

    [32]

    Dupont P, Voisin B 1996 Dynamics Atmo. Oceans 23 289

    [33]

    Liang C, Hong F W, Yao Z C 2015 J. Hydrodynamics Ser. A 30 9 (in Chinese) [梁川, 洪方文, 姚志崇 2015 水动力学研究与进展 30 9]

    [34]

    Cai S, Xie J, Xu J, Wang D, Chen Z, Deng X, Long X 2014 Deep Sea Res. Part I 84 73

  • [1]

    Liang J J, Du T, Huang W G, Zeng K, He M X 2016 J. Ship Mech. 20 635 (in Chinese) [梁建军, 杜涛, 黄韦艮, 曾侃, 贺明霞 2016 船舶力学 20 635]

    [2]

    Robey H F 1997 Phys. Fluids 9 3353

    [3]

    Hopfinger E J, Flor J B, Chomaz J M, Bonneton P 1991 Exp. Fluids 11 255

    [4]

    Lin Q, Boyer D L, Fernando H J S 1993 Exp. Fluids 15 147

    [5]

    Chomaz J M, Bonneton P, Hopfinger E J 1993 J. Fluid Mech. 254 1

    [6]

    Bonneton P, Chomaz J M, Hopfinger E J 1993 J. Fluid Mech. 254 23

    [7]

    Wei G, Zhao X Q, Su X B, You Y X 2009 Sci. China: Series G 39 1338 (in Chinese) [魏岗, 赵先奇, 苏晓冰, 尤云祥 2009 中国科学G 39 1338]

    [8]

    Zhao X Q, You Y X, Chen K, Hu T Q, Wei G 2009 J. Shanghai Jiao Tong Univ. 43 1298 (in Chinese) [赵先奇, 尤云祥, 陈科, 胡天群, 魏岗 2009 上海交通大学学报 43 1298]

    [9]

    Wang J, You Y X, Hu T Q, Wang X Q, Zhu M H 2012 Acta Phys. Sin. 61 074701 (in Chinese) [王进, 尤云祥, 胡天群, 王小青, 朱敏慧 2012 物理学报 61 074701]

    [10]

    Wang J, You Y X, Hu T Q, Zhu M H, Wang X Q, Wei G 2012 Chin. Sci. Bull. 57 606 (in Chinese) [王进, 尤云祥, 胡天群, 朱敏慧, 王小青, 魏岗 2012 科学通报 57 606]

    [11]

    Wang H W, Chen K, You Y X, Zhang X S 2017 Chin. Sci. Bull. 62 2132 (in Chinese) [王宏伟, 陈科, 尤云祥, 张新曙 2017 科学通报 62 2132]

    [12]

    Lighthill J 1978 Waves in Fluid (Cambridge: Cambridge University Press) pp23-30

    [13]

    Keller J B, Munk W H 1970 Phys. Fluids 13 1425

    [14]

    Miles J W 1971 Geo. Fluid Dynamics 2 63

    [15]

    Gray E P 1983 Phys. Fluids 26 2919

    [16]

    Voisin B 1994 J. Fluid Mech. 261 333

    [17]

    Yeung R W, Nguyen T C 1999 J. Eng. Math. 35 85

    [18]

    Broutman D, Rottman J, Eckermann S D 2004 Annu. Rev. Fluid Mech. 36 233

    [19]

    Milder M 1974 Internal Waves Radiated by a Moving Source Technical Report (Vol. 1) (Santa Monica: Defense Advanced Research Projects Agency) pp19-25

    [20]

    You Y X, Zhao X Q, Chen K, Wei G 2009 Acta Phys. Sin. 58 6750 (in Chinese) [尤云祥, 赵先奇, 陈科, 魏岗 2009 物理学报 58 6750]

    [21]

    Brandt A, Rottier J R 2015 J. Fluid Mech. 769 103

    [22]

    Lin J T, Pao Y H 1979 Annu. Rev. Fluid Mech. 11 317

    [23]

    Gilreath H E, Brandt A 1985 AIAA J. 23 693

    [24]

    Wei G, Wu N, Xu X H, Su X B, You Y X 2011 Acta Phys. Sin. 60 044704 (in Chinese) [魏岗, 吴宁, 徐小辉, 苏晓冰, 尤云祥 2011 物理学报 60 044704]

    [25]

    Dupont P, Kadri Y, Chomaz J M 2001 Phys. Fluids 13 3223

    [26]

    Druzhinin O A, Papko V V, Sergeev D A, Troitskaya Y I 2006 Izv. Atmos. Ocean. Phys. 42 615

    [27]

    Druzhinin O A 2009 Fluid Dyn. 44 213

    [28]

    Vasholz D P 2011 Theoretical and Computational Fluid Dynamics 25 357

    [29]

    Diamessis P J, Gurka R, Liberzon A 2010 Phys. Fluids 22 086601

    [30]

    Abdilghanie A M, Diamessis P J 2013 J. Fluid Mech. 720 104

    [31]

    Yao Z C, Zhao F, Liang C, Hong F W, Zhang J 2017 J. Ship Mech. 21 8 (in Chinese) [姚志崇, 赵峰, 梁川, 洪方文, 张军 2017 船舶力学 21 8]

    [32]

    Dupont P, Voisin B 1996 Dynamics Atmo. Oceans 23 289

    [33]

    Liang C, Hong F W, Yao Z C 2015 J. Hydrodynamics Ser. A 30 9 (in Chinese) [梁川, 洪方文, 姚志崇 2015 水动力学研究与进展 30 9]

    [34]

    Cai S, Xie J, Xu J, Wang D, Chen Z, Deng X, Long X 2014 Deep Sea Res. Part I 84 73

  • [1] 何兆阳, 雷波, 杨益新. 源致内波引起的声场扰动及其检测方法. 物理学报, 2023, 72(14): 144301. doi: 10.7498/aps.72.20230346
    [2] 李永飞, 郭瑞明, 赵航芳. 浅海内波环境下声场干涉条纹的稀疏重建. 物理学报, 2023, 72(7): 074301. doi: 10.7498/aps.72.20221932
    [3] 吴雨明, 王任, 丁霄, 王秉中. 基于等效介质原理的宽角超材料吸波体设计*. 物理学报, 2020, (): . doi: 10.7498/aps.69.20201448
    [4] 吴雨明, 丁霄, 王任, 王秉中. 基于等效介质原理的宽角超材料吸波体的理论分析. 物理学报, 2020, 69(5): 054202. doi: 10.7498/aps.69.20191732
    [5] 杨德森, 张睿, 时胜国. 内部体积源作用下的圆柱壳内外声场特性. 物理学报, 2018, 67(24): 244301. doi: 10.7498/aps.67.20181716
    [6] 秦继兴, Katsnelson Boris, 彭朝晖, 李整林, 张仁和, 骆文于. 三维绝热简正波-抛物方程理论及应用. 物理学报, 2016, 65(3): 034301. doi: 10.7498/aps.65.034301
    [7] 崔巍, 闫在在, 木仁. 三层密度分层流体毛细重力波二阶Stokes波解. 物理学报, 2014, 63(14): 140301. doi: 10.7498/aps.63.140301
    [8] 宋文华, 胡涛, 郭圣明, 马力. 浅海内波影响下的波导不变量变化特性分析. 物理学报, 2014, 63(19): 194303. doi: 10.7498/aps.63.194303
    [9] 黄文昊, 尤云祥, 王旭, 胡天群. 有限深两层流体中内孤立波造波实验及其理论模型. 物理学报, 2013, 62(8): 084705. doi: 10.7498/aps.62.084705
    [10] 张鹏, 张晓娟. 基于等效电流源的分层媒质目标反演研究. 物理学报, 2013, 62(16): 164201. doi: 10.7498/aps.62.164201
    [11] 王晶, 马瑞玲, 王龙, 孟俊敏. 采用混合模型数值模拟从深海到浅海内波的传播. 物理学报, 2012, 61(6): 064701. doi: 10.7498/aps.61.064701
    [12] 王进, 尤云祥, 胡天群, 王小青, 朱敏慧. 具有密度跃层分层流体中回转体激发内波特性实验. 物理学报, 2012, 61(7): 074701. doi: 10.7498/aps.61.074701
    [13] 魏岗, 吴宁, 徐小辉, 苏晓冰, 尤云祥. 线性密度分层流体中半球体运动生成内波的实验研究. 物理学报, 2011, 60(4): 044704. doi: 10.7498/aps.60.044704
    [14] 陈科, 尤云祥, 胡天群, 朱敏慧, 王小青. 分层流体中移动动量源生成准二维偶极子涡街特性实验. 物理学报, 2011, 60(2): 024702. doi: 10.7498/aps.60.024702
    [15] 温文媖, 陈小刚, 宋金宝. 三层流体系统非线性界面内波传播理论的研究. 物理学报, 2010, 59(10): 7149-7157. doi: 10.7498/aps.59.7149
    [16] 尤云祥, 赵先奇, 陈科, 魏岗. 有限深密度分层流体中运动物体生成内波的一种等效质量源方法. 物理学报, 2009, 58(10): 6750-6760. doi: 10.7498/aps.58.6750
    [17] 庞 晶, 陈小刚, 宋金宝. 有流存在时三层流体界面波的二阶Stokes波解. 物理学报, 2007, 56(8): 4733-4741. doi: 10.7498/aps.56.4733
    [18] 陈小刚, 宋金宝, 孙 群. 三层流体界面内波的二阶Stokes解. 物理学报, 2005, 54(12): 5699-5706. doi: 10.7498/aps.54.5699
    [19] 颜家壬, 钟建新. 具有基本流动的两层流体界面和表面孤波. 物理学报, 1990, 39(9): 1393-1399. doi: 10.7498/aps.39.1393
    [20] 颜家壬, 黄国翔, 黄念宁. 矩形波导中两层流体界面上的非传播孤立波. 物理学报, 1988, 37(5): 874-880. doi: 10.7498/aps.37.874
计量
  • 文章访问数:  6184
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-25
  • 修回日期:  2017-09-18
  • 刊出日期:  2018-02-05

/

返回文章
返回