搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双能谷效应对N型掺杂Si基Ge材料载流子晶格散射的影响

黄诗浩 谢文明 汪涵聪 林光杨 王佳琪 黄巍 李成

引用本文:
Citation:

双能谷效应对N型掺杂Si基Ge材料载流子晶格散射的影响

黄诗浩, 谢文明, 汪涵聪, 林光杨, 王佳琪, 黄巍, 李成

Lattice scattering in n-type Ge-on-Si based on the unique dual-valley transitions

Huang Shi-Hao, Xie Wen-Ming, Wang Han-Cong, Lin Guang-Yang, Wang Jia-Qi, Huang Wei, Li Cheng
PDF
导出引用
  • 性能优越的Si基高效发光材料与器件的制备一直是Si基光电集成电路中最具挑战性的课题之一.Si基Ge材料不仅与成熟的硅工艺相兼容,而且具有准直接带特性,被认为是实现Si基激光器最有希望的材料.对Si基Ge材料N型掺杂的研究有利于提示出其直接带发光增强机理.本文研究了N型掺杂Si基Ge材料导带电子的晶格散射过程.N型掺杂Si基Ge材料具有独特的双能谷(能谷与L能谷)结构,它将通过以下两方面的竞争关系提高直接带导带底电子的占有率:一方面,处于能谷的导带电子通过谷间光学声子的散射方式散射到L能谷;另一方面,处于L能谷的导带电子通过谷内光学声子散射以及二次谷间光学声子散射或者直接通过谷间光学声子散射的方式跃迁到能谷.当掺杂浓度界于1017 cm-3到1019 cm-3时,适当提高N型掺杂浓度有利于提高直接带能谷导带底电子占有率,进而提高Si基Ge材料直接带发光效率.
    Silicon-based light emitting materials and devices with high efficiency are inarguably the most challenging elements in silicon (Si) photonics. Band-gap engineering approaches, including tensile strain and n-type doping, utilized for tuning germanium (Ge) to an optical gain medium have the potential for realizing monolithic optoelectronic integrated circuit. While previous experimental research has greatly contributed to optical gain and lasing of Ge direct-gap, many efforts were made to reduce lasing threshold, including the understanding of high efficiency luminescence mechanism with tensile strain and n-type doping in Ge. This paper focuses on the theoretical analysis of lattice scattering in n-type Ge-on-Si material based on its unique dual-valley transition for further improving the efficiency luminescence of Ge direct-gap laser. Lattice scattering of carriers, including inter-valley and intra-valley scattering, influence the electron distribution between the direct valley and indirect L valleys in the conduction of n-type Ge-on-Si material. This behavior can be described by theoretical model of quantum mechanics such as perturbation theory. In this paper, the lattice scatterings of intra-valley scattering in valley and L valleys, and of inter-valley scattering between the direct valley and L valleys in the n-type Ge-on-Si materials are exhibited based on its unique dual-valley transition by perturbation theory. The calculated average scattering times for phonon scattering in the cases of valley and L valleys, and for inter-valley optical phonon scattering between valley and L valleys are in agreement with experimental results, which are of significance for understanding the lattice scattering mechanism in the n-type Ge-on-Si material. The numerical calculations show that the disadvantaged inter-valley scattering of electrons from the direct valley to indirect L valleys reduces the electrons dwelling in the direct valley slightly with n-type doping concentration, while the strong inter-valley scattering from the indirect L valleys to indirect valleys increases electrons dwelling in the direct valley with n-type doping concentration. The competition between the two factors leads to an increasing electrons dwelling in the direct valley with n-type doping in a range from 1017 cm-3 to 1019 cm-3. That the electrons in the indirect L valleys are transited into the direct valley by absorbing inter-valley optical phonon modes is one of the effective ways to enhance the efficiency luminescence of Ge direct-gap laser. The results indicate that a low-threshold Ge-on-Si laser can be further improved by engineering the inter-valley scattering for enhancing the electrons dwelling in the valley.
      通信作者: 黄诗浩, haoshihuang@126.com
    • 基金项目: 国家自然科学基金青年基金(批准号:61604041)、福建省自然科学基金青年基金(基金号:2016J05147)、福建省教育厅2017年高校杰出青年科研人才培育计划项目和福建工程学院校科研启动基金(批准号:GY-Z14073)资助的课题.
      Corresponding author: Huang Shi-Hao, haoshihuang@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61604041), the Natural Science Foundation of Fujian Province of China (Grant No. 2016J05147), Training Program for Outstanding Youth Scientific Research Talents of the Education Department of Fujian Province in 2017, and the Science Research Foundation of Fujian University of Technology, China (Grant No. GY-Z14073).
    [1]

    Koerner R, Oehme M, Gollhofer M, Schmid M, Kostecki K, Bechler S, Widmann D, Kasper E, Schulze J 2015 Opt. Express 23 14815

    [2]

    Lin G Y, Chen N L, Zhang L, Huang Z W, Huang W, Wang J Y, Xu J F, Chen S Y, Li C 2016 Materials 9 803

    [3]

    Lin G Y, Yi X H, Li C, Chen N L, Zhang L, Chen S Y, Huang W, Wang J Y, Xiong X H, Sun J M 2016 Appl. Phys. Lett. 109 141104

    [4]

    Kaschel M, Schmid M, Gollhofer M, Werner J, Oehme M, Schulze J 2013 Solid-State Electron 83 87

    [5]

    Camacho-Aguilera R E, Cai Y, Patel N, Bessette J T, Romagnoli M, Kimerling L C, Michel J 2012 Opt. Express 20 11316

    [6]

    Liu J F, Sun X C, Camacho-Aguilera R, Kimerling L C, Michel J 2010 Opt. Lett. 35 679

    [7]

    Liu Z, Hu W X, Li C, Li Y M, Xue C L, Li C B, Zuo Y H, Cheng B W, Wang Q M 2012 Appl. Phys. Lett. 101 231108

    [8]

    Saito S, Al-Attili A Z, Oda K, Ishikawa Y 2016 Semicond. Sci. Technol. 31 043002

    [9]

    Huang S H, Li C, Chen C Z, Wang C, Xie W M, Lin S Y, Shao M, Nie M X, Chen C Y 2016 Chin. Phys. B 25 066601

    [10]

    Bao S, Kim D, Onwukaeme C, Gupta S, Saraswat K, Lee K H, Kim Y, Min D, Jung Y, Qiu H, Wang H, Fitzgerald E, Tan S C, Nam D 2017 Nat. Commun. 8 1845

    [11]

    Kurdi M E, Fishman G, Sauvage S, Boucaud P 2010 J. Appl. Phys. 107 013710

    [12]

    Liu L, Zhang M, Hu L J, Di Z F, Zhao S J 2014 J. Appl. Phys. 116 113105

    [13]

    Dutt B, Sukhdeo D S, Nam D, Vulovic B M, Yuan Z, Saraswat K C 2012 IEEE Photon. J. 4 2002

    [14]

    Chow W W 2012 Appl. Phys. Lett. 100 191113

    [15]

    Huang S H, Li C, Chen C Z, Zheng Y Y, Lai H K, Chen S Y 2012 Acta Phys. Sin. 61 036202 (in Chinese)[黄诗浩, 李成, 陈城钊, 郑元宇, 赖虹凯, 陈松岩 2012 物理学报 61 036202]

    [16]

    Ridley B K 2013 Quantum Processes in Semiconductors (Oxford:Oxford University Press)

    [17]

    Lever L, Ikonic Z, Valavanis A, Kelsall R W, Myronov M, Leadley D R, Hu Y, Owens N, Gardes F Y, Reed G T 2012 J. Appl. Phys. 112 123105

    [18]

    Fischetti M V, Laux S E 1996 J. Appl. Phys. 80 2234

    [19]

    Wang X X, Li H F, Camacho-Aguilera R, Cai Y, Kimerling L C, Michel J, Liu J F 2013 Opt. Lett. 38 652

    [20]

    Herring C, Vogt E 1956 Phys. Rev. 101 944

    [21]

    Mak G, Driel H 1994 Phys. Rev. B 49 16817

    [22]

    Zhou X Q, Driel H, Mak G 1994 Phys. Rev. B 50 5226

    [23]

    Claussen S A, Tasyurek E, Roth J E, Miller D 2010 Opt. Express 18 25596

  • [1]

    Koerner R, Oehme M, Gollhofer M, Schmid M, Kostecki K, Bechler S, Widmann D, Kasper E, Schulze J 2015 Opt. Express 23 14815

    [2]

    Lin G Y, Chen N L, Zhang L, Huang Z W, Huang W, Wang J Y, Xu J F, Chen S Y, Li C 2016 Materials 9 803

    [3]

    Lin G Y, Yi X H, Li C, Chen N L, Zhang L, Chen S Y, Huang W, Wang J Y, Xiong X H, Sun J M 2016 Appl. Phys. Lett. 109 141104

    [4]

    Kaschel M, Schmid M, Gollhofer M, Werner J, Oehme M, Schulze J 2013 Solid-State Electron 83 87

    [5]

    Camacho-Aguilera R E, Cai Y, Patel N, Bessette J T, Romagnoli M, Kimerling L C, Michel J 2012 Opt. Express 20 11316

    [6]

    Liu J F, Sun X C, Camacho-Aguilera R, Kimerling L C, Michel J 2010 Opt. Lett. 35 679

    [7]

    Liu Z, Hu W X, Li C, Li Y M, Xue C L, Li C B, Zuo Y H, Cheng B W, Wang Q M 2012 Appl. Phys. Lett. 101 231108

    [8]

    Saito S, Al-Attili A Z, Oda K, Ishikawa Y 2016 Semicond. Sci. Technol. 31 043002

    [9]

    Huang S H, Li C, Chen C Z, Wang C, Xie W M, Lin S Y, Shao M, Nie M X, Chen C Y 2016 Chin. Phys. B 25 066601

    [10]

    Bao S, Kim D, Onwukaeme C, Gupta S, Saraswat K, Lee K H, Kim Y, Min D, Jung Y, Qiu H, Wang H, Fitzgerald E, Tan S C, Nam D 2017 Nat. Commun. 8 1845

    [11]

    Kurdi M E, Fishman G, Sauvage S, Boucaud P 2010 J. Appl. Phys. 107 013710

    [12]

    Liu L, Zhang M, Hu L J, Di Z F, Zhao S J 2014 J. Appl. Phys. 116 113105

    [13]

    Dutt B, Sukhdeo D S, Nam D, Vulovic B M, Yuan Z, Saraswat K C 2012 IEEE Photon. J. 4 2002

    [14]

    Chow W W 2012 Appl. Phys. Lett. 100 191113

    [15]

    Huang S H, Li C, Chen C Z, Zheng Y Y, Lai H K, Chen S Y 2012 Acta Phys. Sin. 61 036202 (in Chinese)[黄诗浩, 李成, 陈城钊, 郑元宇, 赖虹凯, 陈松岩 2012 物理学报 61 036202]

    [16]

    Ridley B K 2013 Quantum Processes in Semiconductors (Oxford:Oxford University Press)

    [17]

    Lever L, Ikonic Z, Valavanis A, Kelsall R W, Myronov M, Leadley D R, Hu Y, Owens N, Gardes F Y, Reed G T 2012 J. Appl. Phys. 112 123105

    [18]

    Fischetti M V, Laux S E 1996 J. Appl. Phys. 80 2234

    [19]

    Wang X X, Li H F, Camacho-Aguilera R, Cai Y, Kimerling L C, Michel J, Liu J F 2013 Opt. Lett. 38 652

    [20]

    Herring C, Vogt E 1956 Phys. Rev. 101 944

    [21]

    Mak G, Driel H 1994 Phys. Rev. B 49 16817

    [22]

    Zhou X Q, Driel H, Mak G 1994 Phys. Rev. B 50 5226

    [23]

    Claussen S A, Tasyurek E, Roth J E, Miller D 2010 Opt. Express 18 25596

  • [1] 李齐治, 张世龙, 彭莹莹. 铜氧超导材料电荷密度波和元激发的共振非弹性X射线散射研究. 物理学报, 2024, 73(19): 197401. doi: 10.7498/aps.73.20240983
    [2] 邱钰珺, 李亨宣, 李亚涛, 黄春朴, 李卫华, 张旭涛, 刘英光. 基于纳米点嵌入的界面导热性能优化. 物理学报, 2023, 72(11): 113102. doi: 10.7498/aps.72.20230314
    [3] 刘英光, 薛新强, 张静文, 任国梁. 基于界面原子混合的材料导热性能. 物理学报, 2022, 71(9): 093102. doi: 10.7498/aps.71.20211451
    [4] 刘英光, 郝将帅, 任国梁, 张静文. 不同周期结构硅锗超晶格导热性能研究. 物理学报, 2021, 70(7): 073101. doi: 10.7498/aps.70.20201789
    [5] 王子, 张丹妹, 任捷. 声子系统中弹性波与热输运的拓扑与非互易现象. 物理学报, 2019, 68(22): 220302. doi: 10.7498/aps.68.20191463
    [6] 顾云风, 吴晓莉, 吴宏章. 三终端非对称夹角石墨烯纳米结的弹道热整流. 物理学报, 2016, 65(24): 248104. doi: 10.7498/aps.65.248104
    [7] 袁宗强, 褚敏, 郑志刚. Fermi-Pasta-Ulam β 格点链系统能量载流子研究. 物理学报, 2013, 62(8): 080504. doi: 10.7498/aps.62.080504
    [8] 周青春, 狄尊燕. 声子对隧穿量子点分子辐射场系统量子相位的影响. 物理学报, 2013, 62(13): 134206. doi: 10.7498/aps.62.134206
    [9] 鲍华. 固体氩的晶格热导率的非简谐晶格动力学计算. 物理学报, 2013, 62(18): 186302. doi: 10.7498/aps.62.186302
    [10] 王亚珍, 黄平, 龚中良. 热激发效应对界面摩擦的影响. 物理学报, 2012, 61(6): 063203. doi: 10.7498/aps.61.063203
    [11] 邓艳平, 吕彬彬, 田强. 非对称方势阱中的激子及其与声子的相互作用. 物理学报, 2010, 59(7): 4961-4966. doi: 10.7498/aps.59.4961
    [12] 吴延昭, 谢宁, 刘建静, 焦永芳. 单壁碳纳米管声子谱及比热计算. 物理学报, 2009, 58(11): 7787-7791. doi: 10.7498/aps.58.7787
    [13] 高当丽, 张翔宇, 张正龙, 徐良敏, 雷瑜, 郑海荣. 调控声子提高Tm3+掺杂体系的频率上转换荧光. 物理学报, 2009, 58(9): 6108-6112. doi: 10.7498/aps.58.6108
    [14] 丁凌云, 龚中良, 黄平. 声子摩擦能量耗散机理研究. 物理学报, 2009, 58(12): 8522-8528. doi: 10.7498/aps.58.8522
    [15] 贺梦冬, 龚志强. 多层异质结构中的声学声子输运. 物理学报, 2007, 56(3): 1415-1421. doi: 10.7498/aps.56.1415
    [16] 姚 鸣, 朱卡的, 袁晓忠, 蒋逸文, 吴卓杰. 声子辅助的电磁感应透明和超慢光效应的研究. 物理学报, 2006, 55(4): 1769-1773. doi: 10.7498/aps.55.1769
    [17] 夏志林, 范正修, 邵建达. 激光作用下薄膜中的电子-声子散射速率. 物理学报, 2006, 55(6): 3007-3012. doi: 10.7498/aps.55.3007
    [18] 成 泽. 压电晶体拉曼散射的统一量子论. 物理学报, 2005, 54(11): 5435-5444. doi: 10.7498/aps.54.5435
    [19] 吴延昭, 于 平, 王玉芳, 金庆华, 丁大同, 蓝国祥. 非共振条件下单壁碳纳米管拉曼散射强度的计算. 物理学报, 2005, 54(11): 5262-5268. doi: 10.7498/aps.54.5262
    [20] 徐 权, 田 强. 一维分子链中激子与声子的相互作用和呼吸子解 . 物理学报, 2004, 53(9): 2811-2815. doi: 10.7498/aps.53.2811
计量
  • 文章访问数:  6833
  • PDF下载量:  166
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-18
  • 修回日期:  2017-12-09
  • 刊出日期:  2019-02-20

/

返回文章
返回