搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

快速空间测角系统中偏振像差的分析与研究

李春艳 陆卫国 乔琳

引用本文:
Citation:

快速空间测角系统中偏振像差的分析与研究

李春艳, 陆卫国, 乔琳

Analysis and research of polarization aberration in rapid space angle measuring system

Li Chun-Yan, Lu Wei-Guo, Qiao Lin
PDF
导出引用
  • 快速空间测角系统需要在一定的平移范围内均能实现测量功能,这就要求光束在接收单元具有一定的覆盖面积.受器件尺寸所限,选择对入射光束进行扩束,然而非正入射光经过系统会产生偏振态变化,存在偏振像差,引起测量误差.本文通过采用偏振光线追迹的方法,结合电磁场的边界条件,对快速空间测角系统中一定方位及入射角范围内的光束通过偏振棱镜后出射光束的偏振态变化与分布进行了理论研究及仿真分析;并通过搭建实验平台,利用平移接收单元来模拟不同的入射方位及角度变化.根据实验值与仿真结果的对比分析,得出在方位角为0时,测量误差较小,在方位角为90时,测量误差最大,且随平移距离(即入射角)的增大,测角误差增大.验证了偏振像差的存在对系统测角带来的影响及理论分析的正确性,并提出了改进措施.所得研究结果对优化系统结构并进一步提高系统性能具有一定的指导意义.
    The precise angle measurement and transmission technology have been widely used in the precision measurement, aerospace, military, biomedicine and other devices, which are based on the polarized light and magneto-optical modulation. This method has the characteristics of no rigid connection required, long distance transmission, high precision, etc. However, the azimuth information measurement method needs the assistance of complex servo tracking system according to the orthogonal extinction principle of polarization prism, meanwhile, the measurement time is longer, which reduces reliability and reaction sensitivity of the system. In order to improve the measurement accuracy and fast response capability of the system, a fast space goniometry method is proposed through the Wollaston prism polarizing beam splitter, with which the azimuth is directly calculated according to the two light intensities. The measurement time can be shortened, and the accuracy is improved by the use of magneto-optical modulation technology. The rapid space angle measuring system needs to realize the measurement function in a certain translation range, which requires the beam to have a certain coverage area in the receiving unit. However, the system is limited by size and volume of the device; we can only choose to expand the incident beam. Therefore, when the beam is incident onto the receiving unit, some incident angle and azimuth, that is, non-vertical incidence will be produced. However, the polarization of the non-vertically incident light passing through the system will change and polarization aberration exists, which will lead to measurement error. In this paper, the beam passes through the polarizing prism in a certain range of azimuths and incident angles, and the polarized light tracing method and the boundary condition of the electromagnetic field are used to study and simulate the polarization change and distribution of the outgoing beam. The changes of different incident azimuths and angles can be simulated through the translation of receiving unit, and the azimuths can be measured indirectly by using self-collimation theodolite and right angle prism. By comparing the measured azimuths under the translational and centering conditions, the influence of polarization aberration on the angle measuring system and the correctness of the theoretical analysis are verified. It is concluded that when the azimuth angle is 0, the measurement error is small; when the azimuth is 90, the measurement error is largest, meanwhile the measurement error will increase with the translation distance becoming longer (i.e., the incident angle). According to the comparison between the experimental data and the simulation results, the existing problems are pointed out, and the corresponding improvement measures are proposed. The results of this work have some significance in guiding the optimization of the system structure, and the further improvement inthe performance of the system.
      通信作者: 李春艳, yanerlcy@163.com
    • 基金项目: 陕西省自然科学基金(批准号:2016JQ1026)、陕西省教育厅专项科研计划(批准号:15JK1659)和国家自然科学基金(批准号:11604263)资助的课题.
      Corresponding author: Li Chun-Yan, yanerlcy@163.com
    • Funds: Project supported by the Natural Science Foundation of Shaanxi Province, China (Grant No. 2016JQ1026), the Special Research Program of Shaanxi Provincial Education Department, China (Grant No. 15JK1659), and the National Natural Science Foundation of China (Grant No. 11604263).
    [1]

    Dong X N, Gao L M, Shen X J, Chen L Y 2001 Acta Phot. Sin. 30 1389 (in Chinese) [董晓娜, 高立民, 申小军, 陈良益 2001 光子学报 30 1389]

    [2]

    Shen X J, Ma C W, Dong X N 2001 Acta Phot. Sin. 30 892 (in Chinese) [申小军, 马彩文, 董晓娜 2001 光子学报 30 892]

    [3]

    Wu Y M 2009 Ph. D. Dissertation (Xi'an: Xi'an Institute of Optics and Precision Mechanics) (in Chinese) [吴易明 2009 博士学位论文 (西安: 西安光学精密机械研究所)]

    [4]

    Wu Y M, Gao L M, Chen L Y 2008 Infrar. Laser Eng. 37 525 (in Chinese) [吴易明, 高立民, 陈良益 2008 红外与激光工程 37 525]

    [5]

    Yang Z H, Huang X X, Zhou Z F, Zhang Z L 2012 Acta Opt. Sin. 32 1212006 (in Chinese) [杨志勇, 黄先祥, 周召发, 张志利 2012 光学学报 32 1212006]

    [6]

    Yang Z H, Cao W, Wu F C 2015 Acta Opt. Sin. 25 s112003 (in Chinese) [杨志勇, 蔡伟, 伍樊成 2015 光学学报 25 s112003]

    [7]

    Yang Z Y, Huang X X, Zhou Z F, Zhang Z L 2012 Acta Opt. Sin. 32 0112006 (in Chinese) [杨志勇, 黄先祥, 周召发, 张志利 2012 光学学报 32 0112006]

    [8]

    Yang Z Y, Huang X X, Zhou Z F, Zhang Z L 2012 Acta Opt. Sin. 32 1012001 (in Chinese) [杨志勇, 黄先祥, 周召发, 张志利 2012 光学学报 32 1012001]

    [9]

    Yang Z Y, Zhou Z F, Zhang Z L 2012 Opt. Precis. Eng. 20 692 (in Chinese) [杨志勇, 周召发, 张志利 2012 光学 20 692]

    [10]

    Shen X, Liang Z C 2014 Optron. Lasers 25 1535 (in Chinese) [沈骁, 梁忠诚 2014 光电子 25 1535]

    [11]

    Yang Z Y, Huang X X, Zhou Z F, Zhang Z L 2011 Acta Opt. Sin. 31 1112008 (in Chinese) [杨志勇, 黄先祥, 周召发, 张志利 2011 光学学报 31 1112008]

    [12]

    Lu W G, Wu Y M, Gao L M, Xiao M S, Wang H X 2013 Opt. Precis. Eng. 21 539 (in Chinese) [陆卫国, 吴易明, 高立民, 肖茂森, 王海霞 2013 光学精密工程 21 539]

    [13]

    Lu W G, Wu Y M, Gao L M, Li C Y, Xiao M S 2014 Infrar. Laser Eng. 43 2198 (in Chinese) [陆卫国, 吴易明, 高立民, 李春艳, 肖茂森 2014 红外与激光工程 43 2198]

    [14]

    Lu W G 2013 Ph. D. Dissertation (Xi'an: Xi'an Institute of Optics and Precision Mechanics) (in Chinese) [陆卫国 2013 博士学位论文 (西安: 西安光学精密机械研究所)]

    [15]

    Yang Y F, Yan C X, Hu C H, Wu C J 2016 Acta Phot. Sin. 36 1106003 (in Chinese) [杨宇飞, 颜昌翔, 胡春晖, 吴从均 2016 光子学报 36 1106003]

    [16]

    Li Y H, Hao X, Shi Z Y, Shuai S J, Wang L 2015 Acta Phys. Sin. 64 154214 (in Chinese) [李旸晖, 郝翔, 史召邑, 帅少杰, 王乐 2015 物理学报 64 154214]

    [17]

    Yun G, Crabtree K, Chipman R A 2011 Opt. Lett. 36 4062

    [18]

    Xu J, Liu F, Liu J T, Wang J Y, Han P L, Zhou Z H, Shao X P 2016 Acta Phys. Sin. 65 134201 (in Chinese) [许洁, 刘飞, 刘杰涛, 王娇阳, 韩平丽, 周淙浩, 邵晓鹏 2016 物理学报 65 134201]

    [19]

    Lam W S T, Chipman R 2015 Appl. Opt. 54 3236

    [20]

    Wu H Y, Zhang C M, Zhao B C 2009 Acta Phys. Sin. 58 930 (in Chinese) [吴海英, 张淳民, 赵葆常 2009 物理学报 58 930]

    [21]

    Yun G, Crabtree K, Chipman R A 2011 Appl. Opt. 50 2855

    [22]

    Zhang M R, He Z Q, Wang T, Tian J S 2017 Acta Phys. Sin. 66 084202 (in Chinese) [张敏睿, 贺正权, 汪韬, 田进寿 2017 物理学报 66 084202]

    [23]

    Yun G, McClain S C, Chipman R A 2011 Appl. Opt. 50 2866

    [24]

    Wu H Y, Zhang C M, Zhao B C 2008 Acta Phys. Sin. 57 3499 (in Chinese) [吴海英, 张淳民, 赵葆常 2008 物理学报 57 3499]

    [25]

    Shen W M, Jin Y X, Shao Z X 2003 Acta Phys. Sin. 52 3049 (in Chinese) [沈为民, 金永兴, 邵中兴 2003 物理学报 52 3049]

    [26]

    Zhang C M, Liu N, Wu F Q 2010 Acta Phys. Sin. 59 949 (in Chinese) [张淳民, 刘宁, 吴福全 2010 物理学报 59 949]

    [27]

    Wu H Y, Zhang C M, Zhao B C, Li Y C 2009 Acta Phys. Sin. 58 1642 (in Chinese) [吴海英, 张淳民, 赵葆常, 李英才 2009 物理学报 58 1642]

    [28]

    Liu C, Cen Z F, Li X T, Xu W C, Shang H B, Neng F, Chen L 2012 Acta Phys. Sin. 61 134201 (in Chinese) [刘超, 岑兆丰, 李晓彤, 许伟才, 尚红波, 能芬, 陈立 2012 物理学报 61 134201]

    [29]

    Mu Y K, Zhang C M, Zhao B C 2009 Acta Phys. Sin. 58 3877 (in Chinese) [穆延魁, 张淳民, 赵葆常 2009 物理学报 58 3877]

    [30]

    Xiao M S, Li C Y, Wu Y M, Lu W G, Wang H X 2015 Infrar. Laser Eng. 44 611 (in Chinese) [肖茂森, 李春艳, 吴易明, 陆卫国, 王海霞 2015 红外与激光工程 44 611]

  • [1]

    Dong X N, Gao L M, Shen X J, Chen L Y 2001 Acta Phot. Sin. 30 1389 (in Chinese) [董晓娜, 高立民, 申小军, 陈良益 2001 光子学报 30 1389]

    [2]

    Shen X J, Ma C W, Dong X N 2001 Acta Phot. Sin. 30 892 (in Chinese) [申小军, 马彩文, 董晓娜 2001 光子学报 30 892]

    [3]

    Wu Y M 2009 Ph. D. Dissertation (Xi'an: Xi'an Institute of Optics and Precision Mechanics) (in Chinese) [吴易明 2009 博士学位论文 (西安: 西安光学精密机械研究所)]

    [4]

    Wu Y M, Gao L M, Chen L Y 2008 Infrar. Laser Eng. 37 525 (in Chinese) [吴易明, 高立民, 陈良益 2008 红外与激光工程 37 525]

    [5]

    Yang Z H, Huang X X, Zhou Z F, Zhang Z L 2012 Acta Opt. Sin. 32 1212006 (in Chinese) [杨志勇, 黄先祥, 周召发, 张志利 2012 光学学报 32 1212006]

    [6]

    Yang Z H, Cao W, Wu F C 2015 Acta Opt. Sin. 25 s112003 (in Chinese) [杨志勇, 蔡伟, 伍樊成 2015 光学学报 25 s112003]

    [7]

    Yang Z Y, Huang X X, Zhou Z F, Zhang Z L 2012 Acta Opt. Sin. 32 0112006 (in Chinese) [杨志勇, 黄先祥, 周召发, 张志利 2012 光学学报 32 0112006]

    [8]

    Yang Z Y, Huang X X, Zhou Z F, Zhang Z L 2012 Acta Opt. Sin. 32 1012001 (in Chinese) [杨志勇, 黄先祥, 周召发, 张志利 2012 光学学报 32 1012001]

    [9]

    Yang Z Y, Zhou Z F, Zhang Z L 2012 Opt. Precis. Eng. 20 692 (in Chinese) [杨志勇, 周召发, 张志利 2012 光学 20 692]

    [10]

    Shen X, Liang Z C 2014 Optron. Lasers 25 1535 (in Chinese) [沈骁, 梁忠诚 2014 光电子 25 1535]

    [11]

    Yang Z Y, Huang X X, Zhou Z F, Zhang Z L 2011 Acta Opt. Sin. 31 1112008 (in Chinese) [杨志勇, 黄先祥, 周召发, 张志利 2011 光学学报 31 1112008]

    [12]

    Lu W G, Wu Y M, Gao L M, Xiao M S, Wang H X 2013 Opt. Precis. Eng. 21 539 (in Chinese) [陆卫国, 吴易明, 高立民, 肖茂森, 王海霞 2013 光学精密工程 21 539]

    [13]

    Lu W G, Wu Y M, Gao L M, Li C Y, Xiao M S 2014 Infrar. Laser Eng. 43 2198 (in Chinese) [陆卫国, 吴易明, 高立民, 李春艳, 肖茂森 2014 红外与激光工程 43 2198]

    [14]

    Lu W G 2013 Ph. D. Dissertation (Xi'an: Xi'an Institute of Optics and Precision Mechanics) (in Chinese) [陆卫国 2013 博士学位论文 (西安: 西安光学精密机械研究所)]

    [15]

    Yang Y F, Yan C X, Hu C H, Wu C J 2016 Acta Phot. Sin. 36 1106003 (in Chinese) [杨宇飞, 颜昌翔, 胡春晖, 吴从均 2016 光子学报 36 1106003]

    [16]

    Li Y H, Hao X, Shi Z Y, Shuai S J, Wang L 2015 Acta Phys. Sin. 64 154214 (in Chinese) [李旸晖, 郝翔, 史召邑, 帅少杰, 王乐 2015 物理学报 64 154214]

    [17]

    Yun G, Crabtree K, Chipman R A 2011 Opt. Lett. 36 4062

    [18]

    Xu J, Liu F, Liu J T, Wang J Y, Han P L, Zhou Z H, Shao X P 2016 Acta Phys. Sin. 65 134201 (in Chinese) [许洁, 刘飞, 刘杰涛, 王娇阳, 韩平丽, 周淙浩, 邵晓鹏 2016 物理学报 65 134201]

    [19]

    Lam W S T, Chipman R 2015 Appl. Opt. 54 3236

    [20]

    Wu H Y, Zhang C M, Zhao B C 2009 Acta Phys. Sin. 58 930 (in Chinese) [吴海英, 张淳民, 赵葆常 2009 物理学报 58 930]

    [21]

    Yun G, Crabtree K, Chipman R A 2011 Appl. Opt. 50 2855

    [22]

    Zhang M R, He Z Q, Wang T, Tian J S 2017 Acta Phys. Sin. 66 084202 (in Chinese) [张敏睿, 贺正权, 汪韬, 田进寿 2017 物理学报 66 084202]

    [23]

    Yun G, McClain S C, Chipman R A 2011 Appl. Opt. 50 2866

    [24]

    Wu H Y, Zhang C M, Zhao B C 2008 Acta Phys. Sin. 57 3499 (in Chinese) [吴海英, 张淳民, 赵葆常 2008 物理学报 57 3499]

    [25]

    Shen W M, Jin Y X, Shao Z X 2003 Acta Phys. Sin. 52 3049 (in Chinese) [沈为民, 金永兴, 邵中兴 2003 物理学报 52 3049]

    [26]

    Zhang C M, Liu N, Wu F Q 2010 Acta Phys. Sin. 59 949 (in Chinese) [张淳民, 刘宁, 吴福全 2010 物理学报 59 949]

    [27]

    Wu H Y, Zhang C M, Zhao B C, Li Y C 2009 Acta Phys. Sin. 58 1642 (in Chinese) [吴海英, 张淳民, 赵葆常, 李英才 2009 物理学报 58 1642]

    [28]

    Liu C, Cen Z F, Li X T, Xu W C, Shang H B, Neng F, Chen L 2012 Acta Phys. Sin. 61 134201 (in Chinese) [刘超, 岑兆丰, 李晓彤, 许伟才, 尚红波, 能芬, 陈立 2012 物理学报 61 134201]

    [29]

    Mu Y K, Zhang C M, Zhao B C 2009 Acta Phys. Sin. 58 3877 (in Chinese) [穆延魁, 张淳民, 赵葆常 2009 物理学报 58 3877]

    [30]

    Xiao M S, Li C Y, Wu Y M, Lu W G, Wang H X 2015 Infrar. Laser Eng. 44 611 (in Chinese) [肖茂森, 李春艳, 吴易明, 陆卫国, 王海霞 2015 红外与激光工程 44 611]

  • [1] 刘劼, 陈伟, 杨秋琳, 穆根, 高昊, 申滔, 杨思华, 张振辉. 偏振光声成像技术的研究与发展. 物理学报, 2023, 72(20): 204202. doi: 10.7498/aps.72.20230900
    [2] 苏欣, 黄天烨, 王军转, 刘媛, 郑有炓, 施毅, 王肖沐. 圆偏振光伏效应. 物理学报, 2021, 70(13): 138501. doi: 10.7498/aps.70.20210498
    [3] 袁强, 赵文轩, 马睿, 张琛, 赵伟, 王爽, 冯晓强, 王凯歌, 白晋涛. 基于偏振光相位调制的超衍射极限空间结构光研究. 物理学报, 2017, 66(11): 110201. doi: 10.7498/aps.66.110201
    [4] 张敏睿, 贺正权, 汪韬, 田进寿. 偏振双向衰减对光学成像系统像质影响的矢量平面波谱理论分析. 物理学报, 2017, 66(8): 084202. doi: 10.7498/aps.66.084202
    [5] 李旸晖, 郝翔, 史召邑, 帅少杰, 王乐. 光学薄膜诱导偏振像差对大数值孔径光学系统聚焦特性的影响. 物理学报, 2015, 64(15): 154214. doi: 10.7498/aps.64.154214
    [6] 陈国钧, 周巧巧, 纪宪明, 印建平. 用线偏振光产生可调矢量椭圆空心光束. 物理学报, 2014, 63(8): 083701. doi: 10.7498/aps.63.083701
    [7] 吴良海, 张骏, 范之国, 高隽. 多次散射因素影响下天空偏振光模式的解析模型. 物理学报, 2014, 63(11): 114201. doi: 10.7498/aps.63.114201
    [8] 唐茜, 赵葆常, 邱跃洪, 张淳民, 穆廷魁. 基于光瞳分割和角剪切的成像偏振光谱技术. 物理学报, 2012, 61(23): 230701. doi: 10.7498/aps.61.230701
    [9] 左林, 杨爱英, 周大伟, 孙雨南. 非线性偏振旋转中偏振控制器方位角的研究. 物理学报, 2012, 61(5): 054211. doi: 10.7498/aps.61.054211
    [10] 庞武斌, 岑兆丰, 李晓彤, 钱炜, 尚红波, 许伟才. 偏振对光学系统成像质量的影响. 物理学报, 2012, 61(23): 234202. doi: 10.7498/aps.61.234202
    [11] 张旋, 廖清华, 陈淑文, 胡萍, 于天宝, 刘念华. 新型高效偏振光分束器的设计. 物理学报, 2011, 60(10): 104215. doi: 10.7498/aps.60.104215
    [12] 郭浩, 吴评, 于天宝, 廖清华, 刘念华, 黄永箴. 一种新型的光子晶体偏振光分束器的设计. 物理学报, 2010, 59(8): 5547-5552. doi: 10.7498/aps.59.5547
    [13] 宋文涛, 林峰, 方哲宇, 朱星. 线性偏振光激发的错位表面等离子体激元纳米结构聚焦. 物理学报, 2010, 59(10): 6921-6926. doi: 10.7498/aps.59.6921
    [14] 邱昆, 武保剑, 文峰. 磁光光纤Bragg光栅中圆偏振光的非线性传输特性. 物理学报, 2009, 58(3): 1726-1730. doi: 10.7498/aps.58.1726
    [15] 徐兰青, 李 晖, 谢树森. 手性介质中后向散射米勒矩阵特性及其在血糖无创检测中的应用初探. 物理学报, 2008, 57(9): 6024-6029. doi: 10.7498/aps.57.6024
    [16] 刘 刚, 张书练, 徐 亭, 朱 钧, 李 岩. 腔调谐过程中激光器中两垂直偏振光的回馈特性. 物理学报, 2005, 54(10): 4701-4709. doi: 10.7498/aps.54.4701
    [17] 王 凌, 徐之海, 冯华君. 多分散高浓度介质偏振光后向扩散散射的Monte Carlo仿真. 物理学报, 2005, 54(6): 2694-2698. doi: 10.7498/aps.54.2694
    [18] 朱蔚雯, 朱文玉, 王渭源. 用椭圆偏振光法四相模型研究Si SOI光学性质. 物理学报, 1986, 35(6): 797-802. doi: 10.7498/aps.35.797
    [19] 顾世杰. 各向同性介质中任意偏振光的简并四波混频. 物理学报, 1984, 33(5): 593-601. doi: 10.7498/aps.33.593
    [20] 莫党, 叶贤京. 离子注入硅的椭圆偏振光谱和光性. 物理学报, 1981, 30(10): 1287-1294. doi: 10.7498/aps.30.1287
计量
  • 文章访问数:  6263
  • PDF下载量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-24
  • 修回日期:  2017-09-28
  • 刊出日期:  2018-02-05

/

返回文章
返回