搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

关于Birkhoff逆问题中Santilli方法的研究

崔金超 陈漫 廖翠萃

引用本文:
Citation:

关于Birkhoff逆问题中Santilli方法的研究

崔金超, 陈漫, 廖翠萃

On Santilli's methods in Birkhoffian inverse problem

Cui Jin-Chao, Chen Man, Liao Cui-Cui
PDF
导出引用
  • 研究构造Birkhoff动力学函数的Santilli方法.首先,基于Cauchy-Kovalevskaya型方程解的存在性定理,采用反证法证明自治系统总有自治Birkhoff表示;其次,给出更简洁的方法证明Santilli第二方法可以被简化;找到Santilli第三方法中所隐含的一种等量关系,提出改进的Santilli第三方法,并研究该方法的MATLAB程序化计算;最后,总结全文并对结果进行讨论.
    In this paper, we mainly study the simplification and improvement of Santilli's methods in Birkhoffian system, which is a more general type of basic dynamic system. The theories and methods of Birkhoffian dynamics have been used in hadron physics, quantum physics, rotational relativity theory, and fractional dynamics. As is well known, Lagrangian inverse problem, Hamiltonian inverse problem, and Birkhoffian inverse problem are the main objects of the dynamic inverse problems. The results given by Douglas (Douglas J 1941 Trans. Amer. Math. Soc. 50 71) and Havas[Havas P 1957 Nuovo Cimento Suppl. Ser. X5 363] show that only the self-adjoint Newtonian systems can be represented by Lagrange's equations, so the Lagrangian inverse problem is not universal for a holonomic constrained mechanical system. Furthermore, from the equivalence between Lagrange's equation and Hamilton's equation, Hamiltonian inverse problem is not universal. A natural question is then raised:whether there exists a self-adjoint dynamical model whose inverse problem is universal for holonomic constrained mechanical systems, in the field of analytical mechanics.An in-depth study of this issue in the 1980s by R. M. Santilli shows that a universal self-adjoint model exists for a holonomic constrained mechanic system that satisfies the basic conditions of locality, analyticity, and formality. The Birkhoff's equation is a natural extension of the Hamilton's equation, which shows the geometric properties of a nonconservative system as a general symplectic structure. This more general symplectic structure provides the geometry for the study of the non-conservative system preserving structure algorithms. Therefore, it is particularly important to study the problem of the Birkhoffian representation for the holonomic constrained system.For the inverse problem of Birkhoff's dynamics, studied mainly are the condition under which the mechanical systems can be represented by Birkhoff's equations and the construction method of Birkhoff's functions. However, due to the extensiveness and complexity of the holonomic nonconservative system, Birkhoff's dynamical functions do not have so simple construction method as Lagrange function and Hamilton function. The research results of this issue are very few. The existing construction methods are mainly for three constructions proposed by Santilli[Santilli R M 1983 Foundations of Theoretical Mechanics Ⅱ (New York:Springer-Verlag) pp25-28], and there are still many technical problems to be solved in the applications of these methods.In order to solve these problems, this article mainly focuses on the following content. First, according to the existence theorem of Cauchy-Kovalevskaya type equations, we prove that the autonomous system always has an autonomous Birkhoffian representation. Second, a more concise method is given to prove that Santilli's second method can be simplified. An equivalent relationship implied in Santilli's third method is found, an improved Santilli's third method is proposed, and the MATLAB programmatic calculation of the method is studied. Finally, the full text is summarized and the results are discussed.
      通信作者: 陈漫, turb911@bit.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51175042,61402202,11401259)资助的课题.
      Corresponding author: Chen Man, turb911@bit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51175042, 61402202, 11401259).
    [1]

    Birkhoff G D 1927 Dynamical Systems (New York: AMS College Publishers Providence, RI, Vol. IX)

    [2]

    Santilli R M 1978 Foundations of Theoretical Mechanics I (New York: Springer-Verlag) pp219-235

    [3]

    Mei F X 2009 Inverse Problems of Dynamics (Beijing: National Defense Industry Press) pp261-263 (in Chinese) [梅凤翔 2009 动力学逆问题 (北京: 国防工业出版社) 第261–263页]

    [4]

    Douglas J 1941 Trans. Amer. Math. Soc. 50 71

    [5]

    Havas P 1957 Nuovo Cimento Suppl. Ser. X5 363

    [6]

    Marsden J E, Ratiu T S 1999 Introduction to Mechanics and Symmetry. 2nd Edition. (New York: Springer-Verlag) pp181-210

    [7]

    Sarlet W 1982 J. Phys. A 15 1503

    [8]

    Santilli R M 1983 Foundations of Theoretical Mechanics Ⅱ (New York: Springer-Verlag) pp25-28

    [9]

    Mei F X, Shi R C, Zhang Y F, Wu H B 1996 Dynamics of Birkhoff System (Beijing: Beijing Institute of Technology Press) pp8-25 (in Chinese) [梅凤翔, 史荣昌, 张永发, 吴恵彬 1996 Birkhoff系统动力学 (北京: 北京理工大学出版社) 第8–25页]

    [10]

    Mei F X, Wu H B, Li Y M, Chen X W 2016 Chin. J. Theor. Appl. Mech. 48 263 (in Chinese) [梅凤翔, 吴惠彬, 李彦敏, 陈向炜 2016 力学学报 48 263]

    [11]

    Wu H B, Mei F X 2011 Chin. Phys. B 20 290

    [12]

    Luo S K, He J M, Xu Y L 2016 Int. J. Non-Linear Mech. 78 105

    [13]

    Luo S K, Dai Y, Zhang X T, Yang M J 2017 Int. J. Non-Linear Mech. 97 107

    [14]

    Chen X W, Zhang Y, Mei F X 2017 Chin. J. Theor. Appl. Mech. 49 149 (in Chinese) [陈向炜, 张晔, 梅凤翔 2017 力学学报 49 149]

    [15]

    Fu J L, Fu L P, Chen B Y, Sun Y 2016 Phys. Lett. A 380 15

    [16]

    Kong X L, Wu H B 2017 Acta. Phys. Sin. 66 084501 (in Chinese) [孔新雷, 吴惠彬 2017 物理学报 66 084501]

    [17]

    Guo Y X, Liu C, Liu S X 2010 Commun. Math. 18 21

    [18]

    Liu C, Song D, Liu S X, Guo Y X 2013 Sci. Chin. Tech. Sci. 43 541 (in Chinese) [刘畅, 宋端, 刘世兴, 郭永新 2013 中国科学: 物理学 力学 天文学 43 541]

    [19]

    Feng K, Qin M Z 2003 Symplectic Geometric Algorithms for Hamiltonian Systems (Hangzhou: Zhejiang Science & Technology Press) pp246-258 (in Chinese) [冯康, 秦孟兆 2003 哈密尔顿系统的辛几何算法 (杭州: 浙江科学技术出版社) 第246–258页]

    [20]

    Zhang X W, Wu J K, Zhu H P, Huang K F 2002 Appl. Math. Mech. 9 915 (in Chinese) [张兴武, 武际可, 朱海平, 黄克服 2002 应用数学和力学 9 915]

    [21]

    Sun Y J, Shang Z J 2005 Phys. Lett. A 336 358

    [22]

    Liu S X, Liu C, Guo Y X 2011 Chin. Phys. B 20 034501

    [23]

    Ding G T 2008 Acta. Phys. Sin. 57 7415 (in Chinese) [丁光涛 2008 物理学报 57 7415]

    [24]

    Cui J C, Liao C C, Zhao Z 2016 Acta. Phys. Sin. 65 180201 (in Chinese) [崔金超, 廖翠萃, 赵喆, 刘世兴 2016 物理学报 65 180201]

    [25]

    Cui J C, Song D, Guo Y X 2012 Acta. Phys. Sin. 61 244501 (in Chinese) [崔金超, 宋端, 郭永新 2012 物理学报 61 244501]

    [26]

    Song D, Liu C, Guo Y X 2013 Appl. Math. Mech. 34 995 (in Chinese) [宋端, 刘畅, 郭永新 2013 应用数学和力学 34 995]

  • [1]

    Birkhoff G D 1927 Dynamical Systems (New York: AMS College Publishers Providence, RI, Vol. IX)

    [2]

    Santilli R M 1978 Foundations of Theoretical Mechanics I (New York: Springer-Verlag) pp219-235

    [3]

    Mei F X 2009 Inverse Problems of Dynamics (Beijing: National Defense Industry Press) pp261-263 (in Chinese) [梅凤翔 2009 动力学逆问题 (北京: 国防工业出版社) 第261–263页]

    [4]

    Douglas J 1941 Trans. Amer. Math. Soc. 50 71

    [5]

    Havas P 1957 Nuovo Cimento Suppl. Ser. X5 363

    [6]

    Marsden J E, Ratiu T S 1999 Introduction to Mechanics and Symmetry. 2nd Edition. (New York: Springer-Verlag) pp181-210

    [7]

    Sarlet W 1982 J. Phys. A 15 1503

    [8]

    Santilli R M 1983 Foundations of Theoretical Mechanics Ⅱ (New York: Springer-Verlag) pp25-28

    [9]

    Mei F X, Shi R C, Zhang Y F, Wu H B 1996 Dynamics of Birkhoff System (Beijing: Beijing Institute of Technology Press) pp8-25 (in Chinese) [梅凤翔, 史荣昌, 张永发, 吴恵彬 1996 Birkhoff系统动力学 (北京: 北京理工大学出版社) 第8–25页]

    [10]

    Mei F X, Wu H B, Li Y M, Chen X W 2016 Chin. J. Theor. Appl. Mech. 48 263 (in Chinese) [梅凤翔, 吴惠彬, 李彦敏, 陈向炜 2016 力学学报 48 263]

    [11]

    Wu H B, Mei F X 2011 Chin. Phys. B 20 290

    [12]

    Luo S K, He J M, Xu Y L 2016 Int. J. Non-Linear Mech. 78 105

    [13]

    Luo S K, Dai Y, Zhang X T, Yang M J 2017 Int. J. Non-Linear Mech. 97 107

    [14]

    Chen X W, Zhang Y, Mei F X 2017 Chin. J. Theor. Appl. Mech. 49 149 (in Chinese) [陈向炜, 张晔, 梅凤翔 2017 力学学报 49 149]

    [15]

    Fu J L, Fu L P, Chen B Y, Sun Y 2016 Phys. Lett. A 380 15

    [16]

    Kong X L, Wu H B 2017 Acta. Phys. Sin. 66 084501 (in Chinese) [孔新雷, 吴惠彬 2017 物理学报 66 084501]

    [17]

    Guo Y X, Liu C, Liu S X 2010 Commun. Math. 18 21

    [18]

    Liu C, Song D, Liu S X, Guo Y X 2013 Sci. Chin. Tech. Sci. 43 541 (in Chinese) [刘畅, 宋端, 刘世兴, 郭永新 2013 中国科学: 物理学 力学 天文学 43 541]

    [19]

    Feng K, Qin M Z 2003 Symplectic Geometric Algorithms for Hamiltonian Systems (Hangzhou: Zhejiang Science & Technology Press) pp246-258 (in Chinese) [冯康, 秦孟兆 2003 哈密尔顿系统的辛几何算法 (杭州: 浙江科学技术出版社) 第246–258页]

    [20]

    Zhang X W, Wu J K, Zhu H P, Huang K F 2002 Appl. Math. Mech. 9 915 (in Chinese) [张兴武, 武际可, 朱海平, 黄克服 2002 应用数学和力学 9 915]

    [21]

    Sun Y J, Shang Z J 2005 Phys. Lett. A 336 358

    [22]

    Liu S X, Liu C, Guo Y X 2011 Chin. Phys. B 20 034501

    [23]

    Ding G T 2008 Acta. Phys. Sin. 57 7415 (in Chinese) [丁光涛 2008 物理学报 57 7415]

    [24]

    Cui J C, Liao C C, Zhao Z 2016 Acta. Phys. Sin. 65 180201 (in Chinese) [崔金超, 廖翠萃, 赵喆, 刘世兴 2016 物理学报 65 180201]

    [25]

    Cui J C, Song D, Guo Y X 2012 Acta. Phys. Sin. 61 244501 (in Chinese) [崔金超, 宋端, 郭永新 2012 物理学报 61 244501]

    [26]

    Song D, Liu C, Guo Y X 2013 Appl. Math. Mech. 34 995 (in Chinese) [宋端, 刘畅, 郭永新 2013 应用数学和力学 34 995]

  • [1] 崔金超, 廖翠萃, 刘世兴, 梅凤翔. Birkhoff动力学函数成为约束系统第一积分的判别方法. 物理学报, 2017, 66(4): 040201. doi: 10.7498/aps.66.040201
    [2] 王春妮, 王亚, 马军. 基于亥姆霍兹定理计算动力学系统的哈密顿能量函数. 物理学报, 2016, 65(24): 240501. doi: 10.7498/aps.65.240501
    [3] 崔金超, 廖翠萃, 赵喆, 刘世兴. 一种求解Birkhoff动力学函数和Lagrange函数的简化方法. 物理学报, 2016, 65(18): 180201. doi: 10.7498/aps.65.180201
    [4] 陈菊, 张毅. El-Nabulsi动力学模型下Birkhoff系统Noether对称性的摄动与绝热不变量. 物理学报, 2014, 63(10): 104501. doi: 10.7498/aps.63.104501
    [5] 宋端. 构造Birkhoff动力学函数的Santilli第二方法的简化. 物理学报, 2014, 63(14): 144501. doi: 10.7498/aps.63.144501
    [6] 王肖肖, 张美玲, 韩月林, 贾利群. Chetaev型非完整约束相对运动动力学系统Nielsen方程的Mei对称性和Mei守恒量. 物理学报, 2012, 61(20): 200203. doi: 10.7498/aps.61.200203
    [7] 王肖肖, 孙现亭, 张美玲, 解银丽, 贾利群. Chetaev型约束的相对运动动力学系统Nielsen方程的Noether对称性与Noether守恒量. 物理学报, 2012, 61(6): 064501. doi: 10.7498/aps.61.064501
    [8] 秦卫阳, 孙涛, 焦旭东, 杨永锋. 一类动力学系统通过函数耦合实现混沌同步. 物理学报, 2012, 61(9): 090502. doi: 10.7498/aps.61.090502
    [9] 张毅. 相对论性力学系统的Birkhoff对称性与守恒量. 物理学报, 2012, 61(21): 214501. doi: 10.7498/aps.61.214501
    [10] 张宏彬, 吕洪升, 顾书龙. 完整约束力学系统保Lie对称性差分格式. 物理学报, 2010, 59(8): 5213-5218. doi: 10.7498/aps.59.5213
    [11] 贾利群, 崔金超, 张耀宇, 罗绍凯. Chetaev型约束力学系统Appell方程的Lie对称性与守恒量. 物理学报, 2009, 58(1): 16-21. doi: 10.7498/aps.58.16
    [12] 梅凤翔, 解加芳, 冮铁强. 广义Birkhoff系统动力学的一类逆问题. 物理学报, 2008, 57(8): 4649-4651. doi: 10.7498/aps.57.4649
    [13] 张 毅. 相空间中单面完整约束力学系统的对称性与守恒量. 物理学报, 2005, 54(10): 4488-4495. doi: 10.7498/aps.54.4488
    [14] 李爱民, 张 莹, 李子平. 非完整约束奇异广义力学系统的Poincaré-Cartan积分. 物理学报, 2004, 53(9): 2816-2820. doi: 10.7498/aps.53.2816
    [15] 张 毅. 单面完整约束力学系统的形式不变性. 物理学报, 2004, 53(2): 331-336. doi: 10.7498/aps.53.331
    [16] 傅景礼, 陈立群, 谢凤萍. 相对论性Birkhoff系统的对称性摄动及其逆问题. 物理学报, 2003, 52(11): 2664-2670. doi: 10.7498/aps.52.2664
    [17] 葛伟宽, 张 毅. 二阶可降阶微分约束系统的形式不变性. 物理学报, 2003, 52(9): 2105-2108. doi: 10.7498/aps.52.2105
    [18] 罗绍凯, 傅景礼, 陈向炜. 转动系统相对论性Birkhoff动力学的基本理论. 物理学报, 2001, 50(3): 383-389. doi: 10.7498/aps.50.383
    [19] 傅景礼, 陈立群, 罗绍凯, 陈向炜, 王新民. 相对论Birkhoff系统动力学研究. 物理学报, 2001, 50(12): 2289-2295. doi: 10.7498/aps.50.2289
    [20] 罗绍凯, 郭永新, 陈向炜, 傅景礼. 转动相对论Birkhoff系统动力学的场方法. 物理学报, 2001, 50(11): 2049-2052. doi: 10.7498/aps.50.2049
计量
  • 文章访问数:  5707
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-21
  • 修回日期:  2017-11-21
  • 刊出日期:  2018-03-05

/

返回文章
返回