-
采用蒙特卡罗抽样与粒子模拟相结合的方法,数值研究了材料二次电子产额对腔体双边二次电子倍增瞬态演化及饱和特性的影响.研究发现:随着材料二次电子产额的增加,二次电子增长率以及稳态二次电子数目和振幅均呈现增加的趋势,放电电流起振时间逐步缩短,稳态电流幅值以及放电功率平均值和振幅值均呈现逐步增加并趋于饱和的规律,沉积功率波形延时以及脉宽呈现逐步增加并趋于饱和的趋势.粒子模拟给出了高/低二次电子产额情况下的电子相空间分布、电荷密度分布、平均碰撞能量、平均二次电子产额、二次电子数目和放电电流的细致物理图像.模拟结果表明:高二次电子产额材料,饱和时更倾向趋于单边二次电子倍增类型分布;低二次电子产额材料的二次电子倍增饱和特性由空间电荷场的去群聚效应和反场效应同时决定,而高二次电子产额材料的二次电子倍增饱和特性则主要是由发射面附近的强空间电荷场反场效应决定的.
-
关键词:
- 双边二次电子倍增瞬态特性 /
- 材料二次电子产额 /
- 蒙特卡罗方法 /
- 粒子模拟方法
The influences of secondary electron yield (SEY) of material on the transient and saturation characteristics of two-sided multipactor discharge in cavity are numerically investigated by using particle-in-cell and Monte-Carlo methods. The numerical results indicate that as the SEY increases, the rate of electron number increases and the average value and magnitude of steady electron number also increase. The oscillation start-time of discharge current is shortened, and the steady value of discharge current increases and tends to be saturated. Both the average value and magnitude of steady discharge power increase and tend to be saturated. Both the time-delay and pulse width of deposited power waveform increase and also tend to be saturated. Under the circumstances of higher and lower value of SEY, the physical images of electron phase space, charge density, average impact energy, average SEY, electron number and discharge current are in detail shown in particle-in-cell simulation. The results can be concluded as follows. Under the circumstances of lower value of SEY, the saturation characteristics is determined by both debunching and reverse field of space charge effects. But under the circumstances of higher value of SEY, the multipactor mechanism tends to be one-sided mode in the steady stage which can be obviously determined by reverse-field of space charge effect.-
Keywords:
- transient characteristics of two-sided multipactor discharge /
- secondary electron yield of material /
- Monte-Carlo method /
- particle-in-cell method
[1] Vaughan J R M 1988 IEEE Trans. Electron Dev. 35 1172
[2] Kishek R A, Lau Y Y, Ang L K, Valfells A, Gilgenbach R M 1998 Phys. Plasmas 5 2120
[3] Kishek R A, Lau Y Y 1995 Phys. Rev. Lett. 75 1218
[4] Kishek R A 2012 Phys. Rev. Lett. 108 035003
[5] Zhang P, Lau Y Y, Franzi M, Gilgenbach R M 2011 Phys. Plasmas 18 053508
[6] Sazontov A G, Nechaev V E, Vdovicheva N K 2011 Appl. Phys. Lett. 98 161503
[7] Sazontov A, Buyanova M, Semenov V, Rakova E, Vdovicheva N, Anderson D, Lisak M, Puech J, Lapierre L 2005 Phys. Plasmas 12 053102
[8] Zhang X, Wang Y, Fan J J 2015 Phys. Plasmas 22 022110
[9] Li Y D, Yan Y J, Lin S, Wang H G, Liu C L 2014 Acta Phys. Sin. 63 047902 (in Chinese) [李永东, 闫杨娇, 林舒, 王洪广, 刘纯亮 2014 物理学报 63 047902]
[10] Gopinath V P, Verboncoeur J P, Birdsall C K 1998 Phys. Plasmas 5 1535
[11] Riyopoulos S 1997 Phys. Plasmas 4 1448
[12] Devanz G 2001 Phys. Rev. Special Topics-Accelerators and Beams 4 012001
[13] Xu B, Li Z Q, Sha P, Wang G W, Pan W M, He Y 2012 High Power Laser and Particle Beams 24 2723 (in Chinese) [徐波, 李中泉, 沙鹏, 王光伟, 潘卫民, 何源 2012 强激光与粒子束 24 2723]
[14] Wang C, Adelmann A, Zhang T J, Jiang X D 2012 High Power Laser and Particle Beams 24 1244 (in Chinese) [王川, Andreas Adelmann, 张天爵, 姜兴东 2012 强激光与粒子束 24 1244]
[15] Kim H C, Verboncoeur J P 2005 Phys. Plasmas 12 123504
[16] Dong Y, Liu Q X, Pang J, Yang W Y, Zhou H J, Dong Z W 2017 Acta Phys. Sin. 66 207901 (in Chinese) [董烨, 刘庆想, 庞健, 杨温渊, 周海京, 董志伟 2017 物理学报 66 207901]
[17] Liao L, Zhang M, Gu Q 2013 Nucl. Instrum. Meth. Phys. Res. A 729 381
[18] Buyanova M, Semenov V E, Anderson D, Lisak M, Puech J 2010 Phys. Plasmas 17 043504
[19] Vaughan J R M 1993 IEEE Trans. Electron Dev. 40 830
[20] Kishek R A, Lau Y Y 1998 Phys. Rev. Lett. 80 193
-
[1] Vaughan J R M 1988 IEEE Trans. Electron Dev. 35 1172
[2] Kishek R A, Lau Y Y, Ang L K, Valfells A, Gilgenbach R M 1998 Phys. Plasmas 5 2120
[3] Kishek R A, Lau Y Y 1995 Phys. Rev. Lett. 75 1218
[4] Kishek R A 2012 Phys. Rev. Lett. 108 035003
[5] Zhang P, Lau Y Y, Franzi M, Gilgenbach R M 2011 Phys. Plasmas 18 053508
[6] Sazontov A G, Nechaev V E, Vdovicheva N K 2011 Appl. Phys. Lett. 98 161503
[7] Sazontov A, Buyanova M, Semenov V, Rakova E, Vdovicheva N, Anderson D, Lisak M, Puech J, Lapierre L 2005 Phys. Plasmas 12 053102
[8] Zhang X, Wang Y, Fan J J 2015 Phys. Plasmas 22 022110
[9] Li Y D, Yan Y J, Lin S, Wang H G, Liu C L 2014 Acta Phys. Sin. 63 047902 (in Chinese) [李永东, 闫杨娇, 林舒, 王洪广, 刘纯亮 2014 物理学报 63 047902]
[10] Gopinath V P, Verboncoeur J P, Birdsall C K 1998 Phys. Plasmas 5 1535
[11] Riyopoulos S 1997 Phys. Plasmas 4 1448
[12] Devanz G 2001 Phys. Rev. Special Topics-Accelerators and Beams 4 012001
[13] Xu B, Li Z Q, Sha P, Wang G W, Pan W M, He Y 2012 High Power Laser and Particle Beams 24 2723 (in Chinese) [徐波, 李中泉, 沙鹏, 王光伟, 潘卫民, 何源 2012 强激光与粒子束 24 2723]
[14] Wang C, Adelmann A, Zhang T J, Jiang X D 2012 High Power Laser and Particle Beams 24 1244 (in Chinese) [王川, Andreas Adelmann, 张天爵, 姜兴东 2012 强激光与粒子束 24 1244]
[15] Kim H C, Verboncoeur J P 2005 Phys. Plasmas 12 123504
[16] Dong Y, Liu Q X, Pang J, Yang W Y, Zhou H J, Dong Z W 2017 Acta Phys. Sin. 66 207901 (in Chinese) [董烨, 刘庆想, 庞健, 杨温渊, 周海京, 董志伟 2017 物理学报 66 207901]
[17] Liao L, Zhang M, Gu Q 2013 Nucl. Instrum. Meth. Phys. Res. A 729 381
[18] Buyanova M, Semenov V E, Anderson D, Lisak M, Puech J 2010 Phys. Plasmas 17 043504
[19] Vaughan J R M 1993 IEEE Trans. Electron Dev. 40 830
[20] Kishek R A, Lau Y Y 1998 Phys. Rev. Lett. 80 193
计量
- 文章访问数: 6439
- PDF下载量: 152
- 被引次数: 0