搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于神光III原型装置开展的激光直接驱动准等熵压缩研究进展

薛全喜 江少恩 王哲斌 王峰 赵学庆 易爱平 丁永坤 刘晶儒

引用本文:
Citation:

基于神光III原型装置开展的激光直接驱动准等熵压缩研究进展

薛全喜, 江少恩, 王哲斌, 王峰, 赵学庆, 易爱平, 丁永坤, 刘晶儒

Progress of laser-driven quasi-isentropic compression study performed on SHENGUANG III prototype laser facility

Xue Quan-Xi, Jiang Shao-En, Wang Zhe-Bin, Wang Feng, Zhao Xue-Qing, Yi Ai-Ping, Ding Yong-Kun, Liu Jing-Ru
PDF
导出引用
  • 整形激光驱动准等熵压缩是高效的物质动态压缩方式,是开展材料高压压缩特性研究的重要手段.本文系统介绍了近年来基于神光Ⅲ原型激光装置开展的整形激光直接驱动准等熵压缩研究工作:创立了凝聚态物质的准等熵压缩理论模型,改进了实验设计方法和数据处理方法,掌握了制靶工艺,开展了激光加载实验并在多种靶型中实现了数百GPa的准等熵压缩.实验获取的参数范围超过传统加载方式,数据质量达到国际先进水平.
    The equation of state for solid at extreme pressure and relatively low temperature is an important topic in the study of astrophysics and fundamental physics of condensed matter. Direct laser-driven quasi-isentropic compression is a powerful method to achieve such extreme states which have been developed in recent years. A lot of researches have been done in Research Center of Laser Fusion in China since 2012, which are introduced in this article. The researches include an analytical isentropic compression model, a developed characteristic method, techniques for target manufacture, and experiments performed on SHENGUANG Ⅲ prototype laser facility. The analytical isentropic compression model for condensed matter is obtained based on hydrodynamic equations and a Murnaghan-form state equation. Using the analytical model, important parameters, such as maximum shockless region width, material properties, pressure pulse profile, and pressure pulse duration can be properly allocated or chosen, which is convenient for experimental estimation and design. The characteristic method is developed based on a Murnaghan-form isentropic equation and characteristics, which can be used for experimental design, simulation, and experimental data processing. Based on the above researches, several rounds of experiments have been performed to obtain better isentropic effect by upgrading the target configurations. Five kinds of target configurations have been used up to now, which are three-step aluminum target, CH-coated planar aluminum target, CH-coated three-step aluminum target, planar aluminum target with Au blocking layer, and three-step aluminum target with Au blocking layer. The rear surface of three-step aluminum target is found to be destroyed when the loading pressure rises up to 194 GPa, and weak shock appears in CH-coated planar aluminum target and CH-coated three-step aluminum target. Besides, velocity interferometer system for any reflector (VISAR) fingers are found to decrease when the pressure rises up to about 400 GPa and disappears at 645 GPa. By reducing laser intensity, the whole interface velocities on three steps are obtained in the CH-coated three-step aluminum target and a stress-density curve is calculated. In order to eliminate the weak shock, the target configurations are upgraded by changing the ablation layer and putting a gold blocking layer after it. The experimental results show that the weak shock is eliminated and much clearer VISAR fingers are obtained when pressure rises to as high as 570 GPa.
      通信作者: 薛全喜, quanxixue@163.com
    • 基金项目: 国家自然科学基金(批准号:11475154,11305156)、科学挑战专题(批准号:TZ2016001)和激光与物质相互作用国家重点实验室基金(批准号:SKLLIM1606)资助的课题.
      Corresponding author: Xue Quan-Xi, quanxixue@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11475154, 11305156), Science Challenge Project (Grant No. TZ2016001), and the Foundation of key Laboratory of China (Grant No. SKLLIM1606).
    [1]

    Smith R F, Eggert J H, Jeanloz R, Duffy T S, Braun D G, Patterson J R, Rudd R E, Biener J, Lazicki A E, Hamza A V, Wang J, Braun T, Benedict L X, Celliers P M, Collins G W 2014 Nature 511 330

    [2]

    Laio A, Bernard S, Chiarotti G, Scandolo S, Tosatti E 2000 Science 287 1027

    [3]

    Remington B, Drake R P, Ryutov D D 2006 Rev. Mod. Phys. 78 755

    [4]

    Bradley D K, Eggert J H, Smith R F, Prisbrey S T, Hicks D G, Braun D G, Biener J, Hamza A, Rudd R E, Collins G 2009 Phys. Rev. Lett. 102 075503

    [5]

    Guillot T 1999 Science 286 72

    [6]

    Lindl J 1995 Phys. Plasmas 2 3933

    [7]

    Davis J P 2006 J. Appl. Phys. 99 103512

    [8]

    Reisman D B, Wolfer W G, Elsholz A, Furnish M D 2003 J. Appl. Phys. 93 8952

    [9]

    Baer M R, Hall C A, Gustavsen R L, Hooks D E, Sheffield S A 2007 J. Appl. Phys. 101 034906

    [10]

    Ray A, Menon S V G 2009 J. Appl. Phys. 105 064501

    [11]

    Hawke R S, Duerre D E, Huebel J G, Keeler R N, Wallace W C 1978 J. Appl. Phys. 49 3298

    [12]

    Lorenz K T, Edwards M J, Jankowski A F, Pollaine S M, Smith R F, Remington B A 2006 High Energy Density Physics 2 113

    [13]

    Edwards J, Lorenz K T, Remington B A, Pollaine S, Colvin J, Braun D, Lasinski B F, Reisman D, McNaney J M, Greenough J A, Wallace R, Louis H, Kalantar D 2004 Phys. Rev. Lett. 92 075002

    [14]

    Smith R F, Pollaine S M, Moon S J, Lorenz K T, Celliers P M, Eggert J H, Park H S, Collins G W 2007 Phys. Plasma 14 057105

    [15]

    Smith R F, Eggert J H, Rudd R E, Swift D C, Bolme C A, Collins G W 2011 J. Appl. Phys. 11 0123515

    [16]

    Shu H, Fu S Z, Huang X G, Ye J J, Zhou H Z, Xie Z Y, Long T 2012 Acta Phys. Sin. 61 114102 (in Chinese)[舒桦, 傅思祖, 黄秀光, 叶君建, 周华珍, 谢志勇, 龙滔 2012 物理学报 61 114102]

    [17]

    Xue Q, Wang Z, Jiang S, Ye X, Liu J 2014 AIP Adv. 4 057127

    [18]

    Xue Q, Jiang S, Wang Z, Wang F, Hu Y, Ding Y 2016 Physica B 495 64

    [19]

    Xue Q X, Jiang S E, Wang Z B, Zhang H, Ye X S, Zhang Y S 2014 Nuclear Fusion and Plasma Physics 34 17 (in Chinese)[薛全喜, 江少恩, 王哲斌, 章欢, 叶锡生, 张永生 2014 核聚变与等离子体物理 34 17]

    [20]

    Xue Q X, Jiang S E, Wang Z B, Zhang H, Ye X S, Zhang Y S 2013 High Power Laser and Particle Beam 25 2891 (in Chinese)[薛全喜, 江少恩, 王哲斌, 章欢, 叶锡生, 张永生 2013 强激光与粒子束 25 2891]

    [21]

    Xue Q, Wang Z, Jiang S, Wang F, Ye X, Liu J 2014 Phys. Plasmas 21 072709

    [22]

    Zhang Z Y, Zhao Y, Xue Q X, Wang F, Yang J M 2015 Acta Phys. Sin. 64 205202 (in Chinese)[张志宇, 赵阳, 薛全喜, 王峰, 杨家敏 2015 物理学报 64 205202]

    [23]

    Wang F, Peng X S, Xue Q X, Xu T, Wei H Y 2015 Acta Phys. Sin. 64 085202 (in Chinese)[王峰, 彭晓世, 薛全喜, 徐涛, 魏惠月 2015 物理学报 64 085202]

    [24]

    Hawke R S, Duerre D E, Huebel J G, Klapper H, Steinberg D J, Keeler R N 1972 J. Appl. Phys. 43 2734

    [25]

    Nuckolls J, Wood L, Thiessen A, Zimmerman G 1972 Nature 239 139

    [26]

    Atzeni S, Meyer-ter-Vehn J 2004 The Physics of Inertial Fusion (London:Oxford University Press) p148

    [27]

    Davis J P, Deeney C, Knudson M D, Raymond W L, Timothy D P, David E B 2005 Phys. Plasmas 12 056310

    [28]

    Swift D C, Kraus R G, Loomis E N, HicksD G, McNaney J M, Johnson R P 2008 Phys. Rev. E 78 066115

    [29]

    Li W 2003 One-Dimensional Nonsteady Flow and Shock Waves (Beijing:Defense Industry Press) pp36-55 (in Chinese)[李维新 2003 一维不定常流与冲击波(北京:国防工业出版社)第3655页]

    [30]

    Ramis R, Schmaltz R, Meyer-ter-Vehn J 1988 Comp. Phys. Commun. 49 475

    [31]

    Seaman L 1974 J. Appl. Phys. 45 4303

    [32]

    Rothman S D, Davis J P, Maw J, Robinson C M, Parker K, Palmer J 2005 J. Phys. D:Appl. Phys. 38 733

    [33]

    Hayes D 2001 Bakward Intergration of the Equations of Motion to Correct for Free Surface Perturbations (Sandia National Laboratories Report) SAND2001-1440

    [34]

    Rothman S D, Maw J 2006 J. Phys. IV France 134 745

    [35]

    Reisman D B, Wolfer W G, Elsholz A, Furnish M D 2003 J. Appl. Phys. 93 8952

    [36]

    Davis J P 2006 J. Appl. Phys. 99 103512

    [37]

    Kerley G I 1987 Int. J. Impact Eng. 5 441

    [38]

    Smith R F, Eggert J H, Jankowski A, Celliers P M, Edwards M J, Gupta Y M, Asay J R, Collins G W 2007 Phys. Rev. Lett. 98 065701

  • [1]

    Smith R F, Eggert J H, Jeanloz R, Duffy T S, Braun D G, Patterson J R, Rudd R E, Biener J, Lazicki A E, Hamza A V, Wang J, Braun T, Benedict L X, Celliers P M, Collins G W 2014 Nature 511 330

    [2]

    Laio A, Bernard S, Chiarotti G, Scandolo S, Tosatti E 2000 Science 287 1027

    [3]

    Remington B, Drake R P, Ryutov D D 2006 Rev. Mod. Phys. 78 755

    [4]

    Bradley D K, Eggert J H, Smith R F, Prisbrey S T, Hicks D G, Braun D G, Biener J, Hamza A, Rudd R E, Collins G 2009 Phys. Rev. Lett. 102 075503

    [5]

    Guillot T 1999 Science 286 72

    [6]

    Lindl J 1995 Phys. Plasmas 2 3933

    [7]

    Davis J P 2006 J. Appl. Phys. 99 103512

    [8]

    Reisman D B, Wolfer W G, Elsholz A, Furnish M D 2003 J. Appl. Phys. 93 8952

    [9]

    Baer M R, Hall C A, Gustavsen R L, Hooks D E, Sheffield S A 2007 J. Appl. Phys. 101 034906

    [10]

    Ray A, Menon S V G 2009 J. Appl. Phys. 105 064501

    [11]

    Hawke R S, Duerre D E, Huebel J G, Keeler R N, Wallace W C 1978 J. Appl. Phys. 49 3298

    [12]

    Lorenz K T, Edwards M J, Jankowski A F, Pollaine S M, Smith R F, Remington B A 2006 High Energy Density Physics 2 113

    [13]

    Edwards J, Lorenz K T, Remington B A, Pollaine S, Colvin J, Braun D, Lasinski B F, Reisman D, McNaney J M, Greenough J A, Wallace R, Louis H, Kalantar D 2004 Phys. Rev. Lett. 92 075002

    [14]

    Smith R F, Pollaine S M, Moon S J, Lorenz K T, Celliers P M, Eggert J H, Park H S, Collins G W 2007 Phys. Plasma 14 057105

    [15]

    Smith R F, Eggert J H, Rudd R E, Swift D C, Bolme C A, Collins G W 2011 J. Appl. Phys. 11 0123515

    [16]

    Shu H, Fu S Z, Huang X G, Ye J J, Zhou H Z, Xie Z Y, Long T 2012 Acta Phys. Sin. 61 114102 (in Chinese)[舒桦, 傅思祖, 黄秀光, 叶君建, 周华珍, 谢志勇, 龙滔 2012 物理学报 61 114102]

    [17]

    Xue Q, Wang Z, Jiang S, Ye X, Liu J 2014 AIP Adv. 4 057127

    [18]

    Xue Q, Jiang S, Wang Z, Wang F, Hu Y, Ding Y 2016 Physica B 495 64

    [19]

    Xue Q X, Jiang S E, Wang Z B, Zhang H, Ye X S, Zhang Y S 2014 Nuclear Fusion and Plasma Physics 34 17 (in Chinese)[薛全喜, 江少恩, 王哲斌, 章欢, 叶锡生, 张永生 2014 核聚变与等离子体物理 34 17]

    [20]

    Xue Q X, Jiang S E, Wang Z B, Zhang H, Ye X S, Zhang Y S 2013 High Power Laser and Particle Beam 25 2891 (in Chinese)[薛全喜, 江少恩, 王哲斌, 章欢, 叶锡生, 张永生 2013 强激光与粒子束 25 2891]

    [21]

    Xue Q, Wang Z, Jiang S, Wang F, Ye X, Liu J 2014 Phys. Plasmas 21 072709

    [22]

    Zhang Z Y, Zhao Y, Xue Q X, Wang F, Yang J M 2015 Acta Phys. Sin. 64 205202 (in Chinese)[张志宇, 赵阳, 薛全喜, 王峰, 杨家敏 2015 物理学报 64 205202]

    [23]

    Wang F, Peng X S, Xue Q X, Xu T, Wei H Y 2015 Acta Phys. Sin. 64 085202 (in Chinese)[王峰, 彭晓世, 薛全喜, 徐涛, 魏惠月 2015 物理学报 64 085202]

    [24]

    Hawke R S, Duerre D E, Huebel J G, Klapper H, Steinberg D J, Keeler R N 1972 J. Appl. Phys. 43 2734

    [25]

    Nuckolls J, Wood L, Thiessen A, Zimmerman G 1972 Nature 239 139

    [26]

    Atzeni S, Meyer-ter-Vehn J 2004 The Physics of Inertial Fusion (London:Oxford University Press) p148

    [27]

    Davis J P, Deeney C, Knudson M D, Raymond W L, Timothy D P, David E B 2005 Phys. Plasmas 12 056310

    [28]

    Swift D C, Kraus R G, Loomis E N, HicksD G, McNaney J M, Johnson R P 2008 Phys. Rev. E 78 066115

    [29]

    Li W 2003 One-Dimensional Nonsteady Flow and Shock Waves (Beijing:Defense Industry Press) pp36-55 (in Chinese)[李维新 2003 一维不定常流与冲击波(北京:国防工业出版社)第3655页]

    [30]

    Ramis R, Schmaltz R, Meyer-ter-Vehn J 1988 Comp. Phys. Commun. 49 475

    [31]

    Seaman L 1974 J. Appl. Phys. 45 4303

    [32]

    Rothman S D, Davis J P, Maw J, Robinson C M, Parker K, Palmer J 2005 J. Phys. D:Appl. Phys. 38 733

    [33]

    Hayes D 2001 Bakward Intergration of the Equations of Motion to Correct for Free Surface Perturbations (Sandia National Laboratories Report) SAND2001-1440

    [34]

    Rothman S D, Maw J 2006 J. Phys. IV France 134 745

    [35]

    Reisman D B, Wolfer W G, Elsholz A, Furnish M D 2003 J. Appl. Phys. 93 8952

    [36]

    Davis J P 2006 J. Appl. Phys. 99 103512

    [37]

    Kerley G I 1987 Int. J. Impact Eng. 5 441

    [38]

    Smith R F, Eggert J H, Jankowski A, Celliers P M, Edwards M J, Gupta Y M, Asay J R, Collins G W 2007 Phys. Rev. Lett. 98 065701

  • [1] 张旭, 丁进敏, 侯晨阳, 赵一鸣, 刘鸿维, 梁生. 基于机器学习的激光匀光整形方法. 物理学报, 2024, 73(16): 164205. doi: 10.7498/aps.73.20240747
    [2] 杨为明, 段晓溪, 张琛, 理玉龙, 刘浩, 关赞洋, 章欢, 孙亮, 董云松, 杨冬, 王哲斌, 杨家敏. 小尺度靶丸冲击波调控的冲击波测量技术优化及应用. 物理学报, 2024, 73(12): 125203. doi: 10.7498/aps.73.20232000
    [3] 田宝贤, 王钊, 胡凤明, 高智星, 班晓娜, 李静. “天光一号”驱动的聚苯乙烯高压状态方程测量. 物理学报, 2021, 70(19): 196401. doi: 10.7498/aps.70.20210240
    [4] 张云刚, 刘黄韬, 高强, 朱志峰, 李博, 王永达. 飞秒激光引导高压放电下的SF6等离子体时间分辨光谱特性. 物理学报, 2020, 69(18): 185201. doi: 10.7498/aps.69.20200636
    [5] 郭静, 吴奇, 孙力玲. 高压下的铁基超导体:现象与物理. 物理学报, 2018, 67(20): 207409. doi: 10.7498/aps.67.20181651
    [6] 张扬, 薛创, 丁宁, 刘海风, 宋海峰, 张朝辉, 王贵林, 孙顺凯, 宁成, 戴自换, 束小建. 聚龙一号装置磁驱动准等熵压缩实验的一维磁流体力学模拟. 物理学报, 2018, 67(3): 030702. doi: 10.7498/aps.67.20171920
    [7] 陈大伟, 王裴, 蔚喜军, 孙海权, 马东军. 稠密可压缩气粒两相流动中的等熵声速计算建模及物理规律. 物理学报, 2016, 65(9): 094702. doi: 10.7498/aps.65.094702
    [8] 王峰, 彭晓世, 薛全喜, 徐涛, 魏惠月. 基于神光III原型的整形激光直接驱动准等熵压缩实验研究. 物理学报, 2015, 64(8): 085202. doi: 10.7498/aps.64.085202
    [9] 赵继波, 孙承纬, 谷卓伟, 赵剑衡, 罗浩. 爆轰驱动固体套筒压缩磁场计算及准等熵过程分析. 物理学报, 2015, 64(8): 080701. doi: 10.7498/aps.64.080701
    [10] 张志宇, 赵阳, 薛全喜, 王峰, 杨家敏. 激光驱动准等熵压缩透明窗口LiF的透明性. 物理学报, 2015, 64(20): 205202. doi: 10.7498/aps.64.205202
    [11] 姚云华, 卢晨晖, 徐淑武, 丁晶新, 贾天卿, 张诗按, 孙真荣. 飞秒激光脉冲整形技术及其应用. 物理学报, 2014, 63(18): 184201. doi: 10.7498/aps.63.184201
    [12] 王峰, 彭晓世, 单连强, 李牧, 薛全喜, 徐涛, 魏惠月. 基于神光Ⅲ原型装置的激光加载条件下准等熵压缩实验研究进展. 物理学报, 2014, 63(18): 185202. doi: 10.7498/aps.63.185202
    [13] 黄伟其, 黄忠梅, 苗信建, 尹君, 周年杰, 刘世荣, 秦朝建. 纳米硅上的弯曲表面效应及其特征发光. 物理学报, 2014, 63(3): 034201. doi: 10.7498/aps.63.034201
    [14] 单连强, 高宇林, 辛建婷, 王峰, 彭晓世, 徐涛, 周维民, 赵宗清, 曹磊峰, 吴玉迟, 朱斌, 刘红杰, 刘东晓, 税敏, 何颖玲, 詹夏宇, 谷渝秋. 激光驱动气库靶对铝的准等熵压缩实验研究. 物理学报, 2012, 61(13): 135204. doi: 10.7498/aps.61.135204
    [15] 黄海军, 沈 强, 罗国强, 张联盟. 利用多层阻抗梯度飞片产生准等熵压缩的理论解析. 物理学报, 2007, 56(3): 1538-1542. doi: 10.7498/aps.56.1538
    [16] 沈 强, 张联盟, 王传彬, 华劲松, 谭 华, 经福谦. 梯度飞片材料的波阻抗分布设计与优化. 物理学报, 2003, 52(7): 1663-1667. doi: 10.7498/aps.52.1663
    [17] 沈强, 王传彬, 张联盟, 华劲松, 谭华, 经福谦. 为实现准等熵压缩的波阻抗梯度飞片的实验研究. 物理学报, 2002, 51(8): 1759-1763. doi: 10.7498/aps.51.1759
    [18] 胡响明, 彭金生. 受驱动V型三能级激光的光子噪声压缩及其物理机制. 物理学报, 1998, 47(10): 1632-1640. doi: 10.7498/aps.47.1632
    [19] 张静娟, 姬扬, 姚德成, 陈俊本. 遗传算法在激光束整形中的应用. 物理学报, 1996, 45(5): 789-795. doi: 10.7498/aps.45.789
    [20] 高文斌. 金属的对比Hugoniot线及其高压状态方程. 物理学报, 1979, 28(5): 77-85. doi: 10.7498/aps.28.77
计量
  • 文章访问数:  6463
  • PDF下载量:  209
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-29
  • 修回日期:  2017-12-07
  • 刊出日期:  2019-02-20

/

返回文章
返回