搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自适应随机共振理论的太赫兹雷达信号检测方法

王珊 王辅忠

引用本文:
Citation:

基于自适应随机共振理论的太赫兹雷达信号检测方法

王珊, 王辅忠

Adaptive stochastic resonance system in terahertz radar signal detection

Wang Shan, Wang Fu-Zhong
PDF
导出引用
  • 太赫兹雷达系统在差频信号频谱分析过程中,干扰噪声影响其测距能力.针对上述问题,提出基于自适应随机共振理论的太赫兹雷达信号检测方法,通过对含噪差频信号进行二次采样,利用自适应随机共振系统提取信号,进行尺度恢复完成测距计算.实验数据显示,不同测量距离时,相较于快速傅里叶变换法,输出信噪比的平均增益为9.684 dB,其中测量距离为1000 mm处,差频信号初始频谱值提高了64.1倍,系统信噪比增益为11.761 dB;相较于滤波法,在测量距离为1000 mm处信噪比增益最大,提高了70.56%;输入噪声强度为1–5 V之间时,输出信噪比曲线的曲率相对于滤波法降低了86.5%,其中噪声强度为5 V时信噪比增益最大,为14.018 dB.实验表明太赫兹雷达系统的测距能力大幅提高.
    Terahertz radar research has attracted widely attention of researchers due to its advantages such as short wave length, wide bandwidth, no blind spot, low power, and low intercept rate. It is generally considered that the echo signal of terahertz radar system is a signal with noise. Therefore, it is necessary to reduce the noise in the process of the frequency spectrum analysis of different-frequency signals. The fast Fourier transform (FFT) and the filtering method are commonly used in radar signal processing. The FFT method has lower ability to estimate the frequency of signal due to the interference noise. The filtering method detects the signal from the angle of noise elimination, but at the same time, it weakens useful characteristics, blurs position information about the signal, and affects detection capability of terahertz radar system. Aiming at the problem above, a method of detecting terahertz radar signals based on adaptive stochastic resonance (SR) system is proposed in this paper due to a phenomenon that the noise can be suppressed while amplifying the weak signal by transferring the noise energy after going through the SR system. With the different-frequency signal processing method of the twice sampling, the adaptive SR system and the scale recovery, the optimal parameters can be obtained automatically and the ranging calculation can be completed. Comparing with the FFT method, the mean output signal-to-noise ratio (SNR) gain through the SR system is 9.6843 dB at different measuring distances. When the measuring distance is 1000 mm, the initial spectrum value increases from 110.1 to 7172, which is 64.1 times higher than original value. The initial SNR of the whole system is improved from -11.94 to -0.179 dB, the gain is 11.761 dB. Comparing with the filtering method, the largest SNR gain is 6.485 dB when the measuring distance is 1000 mm, which is increased by 70.56%. When the input noise intensity is between 0.5 V and 1 V, the output SNR of the adaptive SR system is higher than that of the traditional filter system, but the gain is small and the maximum SNR gain is 2.148 dB. When the noise intensity of the system is between 1 V and 5 V, the SNR of the adaptive SR system is obviously higher than that of the filter system, and the largest SNR gain is 14.018 dB when the noise intensity D=5 V. The SNR curve of the adaptive SR system tends to be smoother and the curvature is 0.507, while the SNR curvature of the filtering model is 3.765, which is reduced by 86.5%. The method proposed in this paper not only solves the problem of noise coverage in the different-frequency signal, but also uses the characteristic that the noise energy can be transferred to the signal, to improve the output SNR of terahertz radar system, which is beneficial to further signal processing. Experimental results demonstrate that the ranging capability of the THz radar system is greatly improved, which has high application value and wide prospect in practical engineering research.
      通信作者: 王辅忠, wangfuzhong@163.com
    • 基金项目: 国家自然科学基金(批准号:61271011)和天津市高等学校创新团队培养计划(批准号:TD13-5053)资助的课题.
      Corresponding author: Wang Fu-Zhong, wangfuzhong@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61271011) and the Program for Innovative Research Team in University of Tianjin, China (Grant No. TD13-5035).
    [1]

    Robinson L C 1958 Australian Defence Scientific Service 1 57

    [2]

    Withayachumnankul W, Png G M, Yin X X 2007 Proc. IEEE 95 1528

    [3]

    Appleby R, Wallace H B 2007 IEEE Trans. Antennas and Propag. 55 2944

    [4]

    Zhang Z Z, Li H, Cao J C 2018 Acta Phys. Sin. 67 090702 (in Chinese) [张真真, 黎华, 曹俊诚 2018 物理学报 67 090702]

    [5]

    Chai L, Niu Y, Li Y F, Hu M L, Wang Q Y 2016 Acta Phys. Sin. 65 070702 (in Chinese) [柴璐, 牛跃, 栗岩锋, 胡明列, 王清月 2016 物理学报 65 070702]

    [6]

    Hou M S, Zou P, Zhu Y 2009 Electron. Meas. Technol. 32 9 (in Chinese) [候民胜, 邹平, 朱莹 2009 电子测量技术 32 9]

    [7]

    Zhang C, Shi Z F, Guo W 2016 Trans. Microsyst. Technol. 35 141 (in Chinese) [张晨, 史再峰, 郭炜 2016 传感器与微系统 35 141]

    [8]

    Chen L, Bi D P, Zhang W 2015 Electron. Opt. Control 22 107 (in Chinese) [陈璐, 毕大平, 张伟 2015 电光与控制 22 107]

    [9]

    Wang H, Li G X 2010 Electron. Optics Control 17 33 (in Chinese) [王虹, 李国兴 2010 电光与控制 17 33]

    [10]

    Benzi R, Sutera A, Vulpiana A 1981 J. Phys. A 14 453

    [11]

    Leng Y G, Lai Z H 2014 Acta Phys. Sin. 63 020502 (in Chinese) [冷永刚, 赖志慧 2014 物理学报 63 020502]

    [12]

    Yang D X, Hu Z, Yang Y M 2012 Acta Phys. Sin. 61 08050 (in Chinese) [杨定新, 胡政, 杨拥民 2012 物理学报 61 08050]

    [13]

    Li J 2011 M. S. Dissertation (Chengdu: University of Electronic Science and Technology) (in Chinese) [李晋 2011 硕士学位论文 (成都: 电子科技大学)]

    [14]

    Shen C 2013 M. S. Dissertation (Chengdu: University of Electronic Science and Technology) (in Chinese) [申辰 2013 硕士学位论文 (成都: 电子科技大学)]

    [15]

    Liu J J, Leng Y G, Lai Z H, Tan D 2016 Acta Phys. Sin. 65 220501 (in Chinese) [刘进军, 冷永刚, 赖志慧, 谭丹 2016 物理学报 65 220501]

    [16]

    Zou H L, Zheng L Q, Liu C J 2013 Imag. Signal Process. (CISP) 6th International Congress on 2 1090

    [17]

    Xia J Z, Liu Y H, Ma Z P 2012 J. Vib. Shock 31 132 (in Chinese) [夏均忠, 刘远宏, 马宗坡 2012 振动与冲击 31 132]

    [18]

    Zhang G L, Wang F Z 2009 J. Comput. Theor. Nanosci. 6 676

    [19]

    Wang S, Wang F Z, Wang S, Li G J 2018 Chin. J. Phys. 56 3

    [20]

    Gao Y X, Wang F Z 2013 J. Comput. Theor. Nanosci. 0 1

    [21]

    Leng Y G, Wang T Y 2003 Acta Phys. Sin. 52 2432 (in Chinese) [冷永刚, 王太勇 2003 物理学报 52 2432]

    [22]

    Rekoff Jr M G 1985 IEEE Trans. Syst. 18 244

    [23]

    Leng Y G, Wang T Y, Qin X D, Li R X, Guo Y 2004 Acta Phys. Sin. 53 717 (in Chinese) [冷永刚, 王太勇, 秦旭达, 李瑞欣, 郭焱 2004 物理学报 53 717]

    [24]

    Leng Y G, Wang T Y 2003 Acta Phys. Sin. 52 2432 (in Chinese) [冷永刚, 王太勇 2003 物理学报 52 2432]

    [25]

    Qin G R, Gong D C, Hu G, Wen X D 1992 Acta Phys. Sin. 41 3 (in Chinese) [秦光戎, 龚德纯, 胡岗, 温孝东 1992 物理学报 41 3]

  • [1]

    Robinson L C 1958 Australian Defence Scientific Service 1 57

    [2]

    Withayachumnankul W, Png G M, Yin X X 2007 Proc. IEEE 95 1528

    [3]

    Appleby R, Wallace H B 2007 IEEE Trans. Antennas and Propag. 55 2944

    [4]

    Zhang Z Z, Li H, Cao J C 2018 Acta Phys. Sin. 67 090702 (in Chinese) [张真真, 黎华, 曹俊诚 2018 物理学报 67 090702]

    [5]

    Chai L, Niu Y, Li Y F, Hu M L, Wang Q Y 2016 Acta Phys. Sin. 65 070702 (in Chinese) [柴璐, 牛跃, 栗岩锋, 胡明列, 王清月 2016 物理学报 65 070702]

    [6]

    Hou M S, Zou P, Zhu Y 2009 Electron. Meas. Technol. 32 9 (in Chinese) [候民胜, 邹平, 朱莹 2009 电子测量技术 32 9]

    [7]

    Zhang C, Shi Z F, Guo W 2016 Trans. Microsyst. Technol. 35 141 (in Chinese) [张晨, 史再峰, 郭炜 2016 传感器与微系统 35 141]

    [8]

    Chen L, Bi D P, Zhang W 2015 Electron. Opt. Control 22 107 (in Chinese) [陈璐, 毕大平, 张伟 2015 电光与控制 22 107]

    [9]

    Wang H, Li G X 2010 Electron. Optics Control 17 33 (in Chinese) [王虹, 李国兴 2010 电光与控制 17 33]

    [10]

    Benzi R, Sutera A, Vulpiana A 1981 J. Phys. A 14 453

    [11]

    Leng Y G, Lai Z H 2014 Acta Phys. Sin. 63 020502 (in Chinese) [冷永刚, 赖志慧 2014 物理学报 63 020502]

    [12]

    Yang D X, Hu Z, Yang Y M 2012 Acta Phys. Sin. 61 08050 (in Chinese) [杨定新, 胡政, 杨拥民 2012 物理学报 61 08050]

    [13]

    Li J 2011 M. S. Dissertation (Chengdu: University of Electronic Science and Technology) (in Chinese) [李晋 2011 硕士学位论文 (成都: 电子科技大学)]

    [14]

    Shen C 2013 M. S. Dissertation (Chengdu: University of Electronic Science and Technology) (in Chinese) [申辰 2013 硕士学位论文 (成都: 电子科技大学)]

    [15]

    Liu J J, Leng Y G, Lai Z H, Tan D 2016 Acta Phys. Sin. 65 220501 (in Chinese) [刘进军, 冷永刚, 赖志慧, 谭丹 2016 物理学报 65 220501]

    [16]

    Zou H L, Zheng L Q, Liu C J 2013 Imag. Signal Process. (CISP) 6th International Congress on 2 1090

    [17]

    Xia J Z, Liu Y H, Ma Z P 2012 J. Vib. Shock 31 132 (in Chinese) [夏均忠, 刘远宏, 马宗坡 2012 振动与冲击 31 132]

    [18]

    Zhang G L, Wang F Z 2009 J. Comput. Theor. Nanosci. 6 676

    [19]

    Wang S, Wang F Z, Wang S, Li G J 2018 Chin. J. Phys. 56 3

    [20]

    Gao Y X, Wang F Z 2013 J. Comput. Theor. Nanosci. 0 1

    [21]

    Leng Y G, Wang T Y 2003 Acta Phys. Sin. 52 2432 (in Chinese) [冷永刚, 王太勇 2003 物理学报 52 2432]

    [22]

    Rekoff Jr M G 1985 IEEE Trans. Syst. 18 244

    [23]

    Leng Y G, Wang T Y, Qin X D, Li R X, Guo Y 2004 Acta Phys. Sin. 53 717 (in Chinese) [冷永刚, 王太勇, 秦旭达, 李瑞欣, 郭焱 2004 物理学报 53 717]

    [24]

    Leng Y G, Wang T Y 2003 Acta Phys. Sin. 52 2432 (in Chinese) [冷永刚, 王太勇 2003 物理学报 52 2432]

    [25]

    Qin G R, Gong D C, Hu G, Wen X D 1992 Acta Phys. Sin. 41 3 (in Chinese) [秦光戎, 龚德纯, 胡岗, 温孝东 1992 物理学报 41 3]

  • [1] 火元莲, 脱丽华, 齐永锋, 丁瑞博. 基于P范数的核最小对数绝对差自适应滤波算法. 物理学报, 2022, 71(4): 048401. doi: 10.7498/aps.71.20211124
    [2] 宫涛, 杨建华, 单振, 王志乐, 刘后广. 非线性调频信号激励下非线性系统的最优共振响应. 物理学报, 2022, 71(5): 050503. doi: 10.7498/aps.71.20211959
    [3] 李静和, 何展翔, 杨俊, 孟淑君, 李文杰, 廖小倩. 曲波域统计量自适应阈值探地雷达数据去噪技术. 物理学报, 2019, 68(9): 090501. doi: 10.7498/aps.68.20182061
    [4] 王梦蛟, 周泽权, 李志军, 曾以成. 混沌信号自适应协同滤波去噪. 物理学报, 2018, 67(6): 060501. doi: 10.7498/aps.67.20172470
    [5] 汪祥莉, 王斌, 王文波, 喻敏. 混沌背景下非平稳谐波信号的自适应同步挤压小波变换提取. 物理学报, 2016, 65(20): 200202. doi: 10.7498/aps.65.200202
    [6] 柴路, 牛跃, 栗岩锋, 胡明列, 王清月. 差频可调谐太赫兹技术的新进展. 物理学报, 2016, 65(7): 070702. doi: 10.7498/aps.65.070702
    [7] 王莹, 侯凤贞, 戴加飞, 刘新峰, 李锦, 王俊. 基于自适应模板法的脑电信号转移熵分析. 物理学报, 2015, 64(8): 088701. doi: 10.7498/aps.64.088701
    [8] 王梦蛟, 吴中堂, 冯久超. 一种参数优化的混沌信号自适应去噪算法. 物理学报, 2015, 64(4): 040503. doi: 10.7498/aps.64.040503
    [9] 张路, 谢天婷, 罗懋康. 双频信号驱动含分数阶内、外阻尼Duffing振子的振动共振. 物理学报, 2014, 63(1): 010506. doi: 10.7498/aps.63.010506
    [10] 朱航, 张淑宁, 赵惠昌. 基于改进自适应分解法的单通道雷达引信混合信号分离. 物理学报, 2014, 63(5): 058401. doi: 10.7498/aps.63.058401
    [11] 李一博, 张博林, 刘自鑫, 张震宇. 基于量子粒子群算法的自适应随机共振方法研究. 物理学报, 2014, 63(16): 160504. doi: 10.7498/aps.63.160504
    [12] 彭皓, 钟苏川, 屠浙, 马洪. 线性调频信号激励过阻尼双稳系统的随机共振现象研究. 物理学报, 2013, 62(8): 080501. doi: 10.7498/aps.62.080501
    [13] 杨定新, 胡政, 杨拥民. 大参数周期信号随机共振解析. 物理学报, 2012, 61(8): 080501. doi: 10.7498/aps.61.080501
    [14] 钟凯, 姚建铨, 徐德刚, 张会云, 王鹏. 级联差频产生太赫兹辐射的理论研究. 物理学报, 2011, 60(3): 034210. doi: 10.7498/aps.60.034210
    [15] 张存喜, 王瑞, 孔令民. 太赫兹场辅助的单量子阱自旋共振输运. 物理学报, 2010, 59(7): 4980-4984. doi: 10.7498/aps.59.4980
    [16] 林 敏, 方利民, 朱若谷. 双频信号作用下耦合双稳系统的双共振特性. 物理学报, 2008, 57(5): 2638-2642. doi: 10.7498/aps.57.2638
    [17] 张良英, 金国祥, 曹 力. 调频信号的单模激光线性模型随机共振. 物理学报, 2008, 57(8): 4706-4711. doi: 10.7498/aps.57.4706
    [18] 李 强, 王太勇, 冷永刚, 何改云, 何慧龙. 基于近似熵测度的自适应随机共振研究. 物理学报, 2007, 56(12): 6803-6808. doi: 10.7498/aps.56.6803
    [19] 李国辉, 徐得名, 周世平. 随机性参数自适应的混沌同步. 物理学报, 2004, 53(2): 379-382. doi: 10.7498/aps.53.379
    [20] 高金峰, 马西奎, 罗先觉. 实现连续时间标量混沌信号同步的自适应控制方法. 物理学报, 2000, 49(7): 1235-1240. doi: 10.7498/aps.49.1235
计量
  • 文章访问数:  7070
  • PDF下载量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-02
  • 修回日期:  2018-05-24
  • 刊出日期:  2019-08-20

/

返回文章
返回