搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内插扩张室声子晶体管路带隙特性研究

张振方 郁殿龙 刘江伟 温激鸿

引用本文:
Citation:

内插扩张室声子晶体管路带隙特性研究

张振方, 郁殿龙, 刘江伟, 温激鸿

Properties of band gaps in phononic crystal pipe consisting of expansion chambers with extended inlet/outlet

Zhang Zhen-Fang, Yu Dian-Long, Liu Jiang-Wei, Wen Ji-Hong
PDF
导出引用
  • 声子晶体管路的带隙特性,可以实现管路系统在特定频率下的噪声控制.利用二维模态匹配法推导出单个内插扩张室元胞的传递矩阵,结合Bloch定理,得到声子晶体管路的能带结构计算方法;验证了二维方法在计算能带结构时的准确性.研究发现,内插扩张室声子晶体管路存在布拉格带隙和局域共振带隙.进一步研究了晶格常数以及内插管长度对能带结构的影响,结果表明,晶格常数主要控制布拉格带隙,而内插管长度对局域共振带隙有较大的影响,并研究了两种参数变化下的带隙耦合.研究结果可以为管路降噪设计提供新的思路.
    Noise reduction is an interesting and important subject in the piping systems of many applications, in order to suppress noise in the pipe, many significative researches have been done. In recent years, the acoustic wave propagation in the phononic crystal pipe has received increasing attention. The characteristic band gaps in phononic crystal pipe can forbid wave to propagate within the band-gap frequency range, which provides a new way to control the noise in piping system. In this paper, the acoustic properties of phononic crystal pipe consisting of expansion chambers with the extended inlet/outlet are investigated theoretically and numerically. By combining the two-dimensional mode matching method and the transfer matrix method, the band structure and transmission loss, especially the band-gap properties of the phononic crystal structure are presented. The obtained results exhibit excellent agreement with the results from the finite element method. Then, this theoretical method is compared with the one-dimensional plane wave method, and it is found that the results from the proposed method are more accurate within the studied frequency range. Further, the effect of modal order in the band-gap frequency range is analyzed, which shows that the mode matching method has a good convergence.The wave scattering and resonance of the chamber will induce the Bragg and locally-resonant band gaps in the periodic pipe, respectively. Further analysis on the transmission coefficient in a band gap is conducted. It shows that the transmission coefficient decays exponentially with the periodic number increasing, which demonstrates that the suppression of the wave propagation in phononic crystal pipe is caused by the band-gap rather than the impedance mismatch. Then the effects of variable parameters including the lattice constant and the length of the insertion on the location and width of the band gaps are investigated. The results show that the lattice constant mainly controls the Bragg band gaps and the length of the insertion exerts a significant influence on the locally-resonant band gaps. Finally, the coupling behaviors of band gaps are studied to expand their widths. It is found that the Bragg band gaps can be coupled with the locally-resonant band gaps via changing the lattice constant and the length of the insertion, which can give rise to wider band gaps. Furthermore, the coupling between two locally-resonant band gaps is proposed by changing the length of the insertion, which also produces wider band gaps.This study can provide new ideas for designing the phononic crystal pipe to suppress the noise in piping system.
      通信作者: 郁殿龙, dianlongyu@vip.sina.com
    • 基金项目: 国家自然科学基金(批准号:11372346)资助的课题.
      Corresponding author: Yu Dian-Long, dianlongyu@vip.sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11372346).
    [1]

    Liang X D 2010 NVC 30 127 (in Chinese) [梁向东 2010 噪声与振动控制 30 127]

    [2]

    Shen H J, Li Y F, Su Y S, Zhang L K, Song Y B 2017 J. Vib. Shock 36 163 (in Chinese) [沈惠杰, 李雁飞, 苏永生, 章林柯, 宋玉宝 2017 振动与冲击 36 163]

    [3]

    Coulon J M, Atalla N, Desrocher A 2016 Appl. Acoust 113 109

    [4]

    Xiang L Y, Zuo S G, Wu X D, Zhang J, Liu J F 2016 J. Vib. Shock 35 29 (in Chinese) [方智, 季振林, 刘成洋 2016 振动与冲击 35 29]

    [5]

    Fang Z, Ji Z L, Liu C Y 2016 J. Vib. Shock 35 29 (in Chinese) [方智, 季振林, 刘成洋 2016 振动与冲击 35 29]

    [6]

    Guo R, Wang L T, Tang W B, Han S 2017 Appl. Acoust 127 105

    [7]

    Wen X S, Wen J H, Yu D L, Wang G, Liu Y Z, Han X Y 2009 Phononic Crystals (Beijing: National Defence Industry Press) pp1-6 (in Chinese) [温熙森, 温激鸿, 郁殿龙, 王刚, 刘耀宗, 韩小云 2009 声子晶体 (北京: 国防工业出版社) 第1–6页]

    [8]

    Wang G, Yu D L, Wen J H, Liu Y Z, Wen X S 2004 Phys. Lett. A 327 512

    [9]

    Zhang Y F 2014 M. S. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [张亚峰 2014 硕士学位论文 (长沙: 国防科学技术大学)]

    [10]

    Xiao Y, Wen J H, Wen X S 2012 J. Sound Vib. 331 5408

    [11]

    Yu D L, Wen J H, Zhao H G 2011 J. Sound Vib. 133 014502

    [12]

    Liu Y Z, Meng H, Li L, Wen J H 2008 J. Vib. Shock 27 47 (in Chinese) [刘耀宗, 孟浩, 李黎, 温激鸿 2008 振动与冲击 27 47]

    [13]

    Cao Y J, Hou Z L, Liu Y Y 2004 Phys. Lett. A 327 247

    [14]

    Wang G, Wen J H, Han X Y, Zhao H G 2003 Acta Phys. Sin. 52 1943 (in Chinese) [王刚, 温激鸿, 韩小云, 赵宏刚 2003 物理学报 52 1943]

    [15]

    Liu J W, Yu D L, Wen J H, Shen H J, Zhang Y F 2016 J. Vib. Shock 35 141 (in Chinese) [刘江伟, 郁殿龙, 温激鸿, 沈惠杰, 张亚峰 2016 振动与冲击 35 141]

    [16]

    Wen J H, Wang G, Liu Y Z, Yu D L 2004 Acta Phys. Sin. 53 3384 (in Chinese) [温激鸿, 王刚, 刘耀宗, 郁殿龙 2004 物理学报 53 3384]

    [17]

    Hou Z L, Fu X J, Liu Y Y 2004 Phys. Rev. B 70 2199

    [18]

    Xiao Y 2012 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [肖勇 2012博士学位论文 (长沙: 国防科学技术大学)]

    [19]

    Wu J, Bai X C, Xiao Y, Geng M X, Yu D L, Wen J H 2016 Acta Phys. Sin. 65 064602 (in Chinese) [吴健, 白晓春, 肖勇, 耿明昕, 郁殿龙, 温激鸿 2016 物理学报 65 064602]

    [20]

    Fang X, Wen J H, Bonello B, Yin J F, Yu D L 2017 Nat. Commun. 8 1288

    [21]

    Wang X N, Choy Y S, Cheng L, N X 2012 J. Acoust. Soc. Am. 132 3778

    [22]

    Wang X N, Zhu W Y, Zhou Y D 2016 J. Acoust. Soc Am. 139 202

    [23]

    Wu D Z, Zhang N, Mak C M, Cai C Z 2017 Sensors 17 1029

    [24]

    Cai C Z, Mak C M 2016 J. Acoust. Soc Am. 140 471

    [25]

    Yu D L, Du C Y, Shen H J, Liu J W, Wen J H 2017 Chin. Phys. Lett. 34 190

    [26]

    Shen H J 2015 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [沈惠杰 2015博士学位论文 (长沙: 国防科学技术大学)]

    [27]

    Shi X F, Mak C M 2017 Appl. Acoust 1 15

    [28]

    Cao X F, Yu D L, Liu J W, Wen J H 2016 J. Vib. Shock 35 20 (in Chinese) [曹晓丰, 郁殿龙, 刘江伟, 温激鸿 2016 振动与冲击 35 20]

    [29]

    Li Y F, Shen H J, Zhang L K, Su Y S, Yu D L 2016 Phys. Lett. A 380 2322

    [30]

    Selamet A, Ji Z L 1999 J. Sound Vib. 223 197

    [31]

    Selamet A, Xu M, Lee I, Huff N 2005 J. Acoust. Soc Am. 117 2078

    [32]

    Selamet A, Lee I J 2003 J. Acoust. Soc Am. 113 1975

    [33]

    Cao X F 2016 M. S. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [曹晓丰 2016硕士学位论文 (长沙: 国防科学技术大学)]

    [34]

    Fang Z 2014 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [方智 2014 博士学位论文 (哈尔滨: 哈尔滨工程大学)]

  • [1]

    Liang X D 2010 NVC 30 127 (in Chinese) [梁向东 2010 噪声与振动控制 30 127]

    [2]

    Shen H J, Li Y F, Su Y S, Zhang L K, Song Y B 2017 J. Vib. Shock 36 163 (in Chinese) [沈惠杰, 李雁飞, 苏永生, 章林柯, 宋玉宝 2017 振动与冲击 36 163]

    [3]

    Coulon J M, Atalla N, Desrocher A 2016 Appl. Acoust 113 109

    [4]

    Xiang L Y, Zuo S G, Wu X D, Zhang J, Liu J F 2016 J. Vib. Shock 35 29 (in Chinese) [方智, 季振林, 刘成洋 2016 振动与冲击 35 29]

    [5]

    Fang Z, Ji Z L, Liu C Y 2016 J. Vib. Shock 35 29 (in Chinese) [方智, 季振林, 刘成洋 2016 振动与冲击 35 29]

    [6]

    Guo R, Wang L T, Tang W B, Han S 2017 Appl. Acoust 127 105

    [7]

    Wen X S, Wen J H, Yu D L, Wang G, Liu Y Z, Han X Y 2009 Phononic Crystals (Beijing: National Defence Industry Press) pp1-6 (in Chinese) [温熙森, 温激鸿, 郁殿龙, 王刚, 刘耀宗, 韩小云 2009 声子晶体 (北京: 国防工业出版社) 第1–6页]

    [8]

    Wang G, Yu D L, Wen J H, Liu Y Z, Wen X S 2004 Phys. Lett. A 327 512

    [9]

    Zhang Y F 2014 M. S. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [张亚峰 2014 硕士学位论文 (长沙: 国防科学技术大学)]

    [10]

    Xiao Y, Wen J H, Wen X S 2012 J. Sound Vib. 331 5408

    [11]

    Yu D L, Wen J H, Zhao H G 2011 J. Sound Vib. 133 014502

    [12]

    Liu Y Z, Meng H, Li L, Wen J H 2008 J. Vib. Shock 27 47 (in Chinese) [刘耀宗, 孟浩, 李黎, 温激鸿 2008 振动与冲击 27 47]

    [13]

    Cao Y J, Hou Z L, Liu Y Y 2004 Phys. Lett. A 327 247

    [14]

    Wang G, Wen J H, Han X Y, Zhao H G 2003 Acta Phys. Sin. 52 1943 (in Chinese) [王刚, 温激鸿, 韩小云, 赵宏刚 2003 物理学报 52 1943]

    [15]

    Liu J W, Yu D L, Wen J H, Shen H J, Zhang Y F 2016 J. Vib. Shock 35 141 (in Chinese) [刘江伟, 郁殿龙, 温激鸿, 沈惠杰, 张亚峰 2016 振动与冲击 35 141]

    [16]

    Wen J H, Wang G, Liu Y Z, Yu D L 2004 Acta Phys. Sin. 53 3384 (in Chinese) [温激鸿, 王刚, 刘耀宗, 郁殿龙 2004 物理学报 53 3384]

    [17]

    Hou Z L, Fu X J, Liu Y Y 2004 Phys. Rev. B 70 2199

    [18]

    Xiao Y 2012 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [肖勇 2012博士学位论文 (长沙: 国防科学技术大学)]

    [19]

    Wu J, Bai X C, Xiao Y, Geng M X, Yu D L, Wen J H 2016 Acta Phys. Sin. 65 064602 (in Chinese) [吴健, 白晓春, 肖勇, 耿明昕, 郁殿龙, 温激鸿 2016 物理学报 65 064602]

    [20]

    Fang X, Wen J H, Bonello B, Yin J F, Yu D L 2017 Nat. Commun. 8 1288

    [21]

    Wang X N, Choy Y S, Cheng L, N X 2012 J. Acoust. Soc. Am. 132 3778

    [22]

    Wang X N, Zhu W Y, Zhou Y D 2016 J. Acoust. Soc Am. 139 202

    [23]

    Wu D Z, Zhang N, Mak C M, Cai C Z 2017 Sensors 17 1029

    [24]

    Cai C Z, Mak C M 2016 J. Acoust. Soc Am. 140 471

    [25]

    Yu D L, Du C Y, Shen H J, Liu J W, Wen J H 2017 Chin. Phys. Lett. 34 190

    [26]

    Shen H J 2015 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [沈惠杰 2015博士学位论文 (长沙: 国防科学技术大学)]

    [27]

    Shi X F, Mak C M 2017 Appl. Acoust 1 15

    [28]

    Cao X F, Yu D L, Liu J W, Wen J H 2016 J. Vib. Shock 35 20 (in Chinese) [曹晓丰, 郁殿龙, 刘江伟, 温激鸿 2016 振动与冲击 35 20]

    [29]

    Li Y F, Shen H J, Zhang L K, Su Y S, Yu D L 2016 Phys. Lett. A 380 2322

    [30]

    Selamet A, Ji Z L 1999 J. Sound Vib. 223 197

    [31]

    Selamet A, Xu M, Lee I, Huff N 2005 J. Acoust. Soc Am. 117 2078

    [32]

    Selamet A, Lee I J 2003 J. Acoust. Soc Am. 113 1975

    [33]

    Cao X F 2016 M. S. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [曹晓丰 2016硕士学位论文 (长沙: 国防科学技术大学)]

    [34]

    Fang Z 2014 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [方智 2014 博士学位论文 (哈尔滨: 哈尔滨工程大学)]

  • [1] 吴帆帆, 季怡汝, 杨威, 张广宇. 二硫化钼的电子能带结构和低温输运实验进展. 物理学报, 2022, 71(12): 127306. doi: 10.7498/aps.71.20220015
    [2] 许佳玲, 贾利云, 刘超, 吴佺, 赵领军, 马丽, 侯登录. Li(Na)AuS体系拓扑绝缘体材料的能带结构. 物理学报, 2021, 70(2): 027101. doi: 10.7498/aps.70.20200885
    [3] 郭丽娟, 胡吉松, 马新国, 项炬. 二硫化钨/石墨烯异质结的界面相互作用及其肖特基调控的理论研究. 物理学报, 2019, 68(9): 097101. doi: 10.7498/aps.68.20190020
    [4] 杨雯, 宋建军, 任远, 张鹤鸣. 光器件应用改性Ge的能带结构模型. 物理学报, 2018, 67(19): 198502. doi: 10.7498/aps.67.20181155
    [5] 底琳佳, 戴显英, 宋建军, 苗东铭, 赵天龙, 吴淑静, 郝跃. 基于锡组分和双轴张应力调控的临界带隙应变Ge1-xSnx能带特性与迁移率计算. 物理学报, 2018, 67(2): 027101. doi: 10.7498/aps.67.20171969
    [6] 金峰, 张振华, 王成志, 邓小清, 范志强. 石墨烯纳米带能带结构及透射特性的扭曲效应. 物理学报, 2013, 62(3): 036103. doi: 10.7498/aps.62.036103
    [7] 孙伟峰, 郑晓霞. 第一原理研究界面弛豫对InAs/GaSb超晶格界面结构、能带结构和光学性质的影响. 物理学报, 2012, 61(11): 117301. doi: 10.7498/aps.61.117301
    [8] 高尚鹏, 祝桐. 基于自洽GW方法的碳化硅准粒子能带结构计算. 物理学报, 2012, 61(13): 137103. doi: 10.7498/aps.61.137103
    [9] 许俊敏, 胡小会, 孙立涛. 铂掺杂扶手椅型石墨烯纳米带的电学特性研究. 物理学报, 2012, 61(2): 027104. doi: 10.7498/aps.61.027104
    [10] 胡家光, 徐文, 肖宜明, 张丫丫. 晶格中心插入体的对称性及取向对二维声子晶体带隙的影响. 物理学报, 2012, 61(23): 234302. doi: 10.7498/aps.61.234302
    [11] 林琦, 陈余行, 吴建宝, 孔宗敏. N掺杂对zigzag型石墨烯纳米带的能带结构和输运性质的影响. 物理学报, 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [12] 董华锋, 吴福根, 牟中飞, 钟会林. 二维复式声子晶体中基元配置对声学能带结构的影响. 物理学报, 2010, 59(2): 754-758. doi: 10.7498/aps.59.754
    [13] 宋建军, 张鹤鸣, 胡辉勇, 宣荣喜, 戴显英. 应变Si1-xGex能带结构研究. 物理学报, 2009, 58(11): 7947-7951. doi: 10.7498/aps.58.7947
    [14] 王玮, 孙家法, 刘楣, 刘甦. β型烧绿石结构氧化物超导体AOs2O6(A=K,Rb,Cs)电子能带结构的第一性原理计算. 物理学报, 2009, 58(8): 5632-5639. doi: 10.7498/aps.58.5632
    [15] 郝国郡, 傅秀军, 侯志林. 正方点阵上Fibonacci超元胞声子晶体的带结构. 物理学报, 2009, 58(12): 8484-8488. doi: 10.7498/aps.58.8484
    [16] 邵明珠, 罗诗裕. 正弦平方势与带电粒子沟道效应的能带结构. 物理学报, 2007, 56(6): 3407-3410. doi: 10.7498/aps.56.3407
    [17] 刘兴辉, 朱长纯, 曾凡光, 贺永宁, 保文星. 公度双壁碳纳米管层间耦合对其场发射特性影响的研究. 物理学报, 2006, 55(6): 2830-2837. doi: 10.7498/aps.55.2830
    [18] 陈德艳, 吕铁羽, 黄美纯. BaSe的准粒子能带结构. 物理学报, 2006, 55(7): 3597-3600. doi: 10.7498/aps.55.3597
    [19] 邬云文, 海文华, 蔡丽华. Paul阱中一维两离子系统的能带结构. 物理学报, 2006, 55(2): 583-589. doi: 10.7498/aps.55.583
    [20] 郭宝增. 用全带Monte Carlo方法模拟纤锌矿相GaN和ZnO材料的电子输运特性. 物理学报, 2002, 51(10): 2344-2348. doi: 10.7498/aps.51.2344
计量
  • 文章访问数:  6736
  • PDF下载量:  170
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-05
  • 修回日期:  2018-01-16
  • 刊出日期:  2018-04-05

/

返回文章
返回