搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磷、铋掺杂半导体锗光学性质的第一性原理研究

黄蕾 刘文亮 邓超生

引用本文:
Citation:

磷、铋掺杂半导体锗光学性质的第一性原理研究

黄蕾, 刘文亮, 邓超生

First-principles study of optical properties of germanium doped with phosphorus and bismuth

Huang Lei, Liu Wen-Liang, Deng Chao-Sheng
PDF
导出引用
  • 采用基于密度泛函理论框架下的第一性原理计算,研究了不同浓度N型掺杂锗的电子结构和光学性质.掺杂元素分别为磷和铋,并对掺杂后的电子态密度和光学性质进行计算、分析.计算结果表明:N型掺杂会使得费米能级向导带方向移动.在低能区段,介电函数、折射率和吸收系数都受到影响,但到高能区后只有消光系数和吸收系数会被影响;反射率在整个能区都受影响,在中能区掺杂会使反射率提高,在低、高能区会减弱反射率;对损失函数的影响是掺杂浓度越高、损耗峰越小、峰值出现处能量越高.研究结果对N型掺杂半导体锗的光学应用具有一定的指导意义,可以根据上述结论有针对性地调节掺杂浓度和能量范围.
    Using first-principles calculations based on density functional theory, we investigate the electronic structures and optical properties of germanium doped by phosphorus and bismuth with different concentrations. By analyzing the electronic structures and optical properties of the doped systems, we can theoretically analyze and predict the optical and electrical practical applications of N-doped germanium semiconductors. By analyzing and comparing the densities of electronic states before and after doped, we can draw some conclusions. The conclusions show that the Fermi level moves in the direction of conduction band after being doped. Although germanium is an indirect band gap luminescent material, the doped systems all become direct band gap luminescence. Doping more or less affects various optical properties in different energy ranges. In a low energy range, the dielectric function and refractive index of the doped systems are affected. When the doping concentration is 2.083%, the dielectric function and refractive index of the doped system both have a special change. And the absorption of the doped system is changed in the high energy. As the energy increases after the absorption peak, the absorption of the doped system drops faster. The reflectance of the doped system is affected in all the energy ranges. The reflectance of the doped system increases in medium energy. And the reflectance of the doped system is reduced in low energy and high energy range. However, when the doping concentration is 2.083% and the energy is less than 1.7 eV, the reflectance of the doped system is higher than that of the undoped system. The conductivity of the doped system forms two peaks, adding a peak in low energy. The additional peaks in the systems where the doping concentrations are 1.563% and 2.083% are obvious. The peak of the loss function increases after being doped. However, as the doping concentration increases, the increment of the loss function decreases. As the doping concentration increases, the peak is formed at a higher energy. The conclusions are of significance for guiding the optical applications of N-type doped germanium. According to the conclusions, we can adjust the doping concentration and energy range in the optical applications of N-doped germanium.
      通信作者: 刘文亮, wlliu@xtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11504311)和湖南省自然科学基金(批准号:2017JJ3313,2017JJ3308)资助的课题.
      Corresponding author: Liu Wen-Liang, wlliu@xtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11504311) and Hunan Natural Science Foundation, China (Grant Nos. 2017JJ3313, 2017JJ3308).
    [1]

    Sharafi Z, Mohyeddine S, Mohammed S O, Kershi R M, Ravindra R P 2014 Phys. Res. Int. 10 1155

    [2]

    Li Y P, Li C X, Zhuo X, Liu Z T 2016 J. Alloys Compd. 10 1016

    [3]

    Jordan W B, Wagner S 2002 MRS Proc. 10 1557

    [4]

    Pan F C, Lin X L, Chen H M 2015 Acta Phys. Sin. 64 224218 (in Chinese) [潘凤春, 林雪玲, 陈焕铭 2015 物理学报 64 224218]

    [5]

    Ray S, Samaresh D, Singha R, Manna S, Achintya D 2011 Nanoscale Res. Lett. 02 224

    [6]

    Alireza S Z, Othaman S K, Ghoshal M, Mustafa K 2015 Chin. Phys. B 25 028103

    [7]

    Donat J A, Michael D, Gerlach J, Dirk R 2016 MRS Adv. 10 1557

    [8]

    Burbaev T M, Zavaritskaya T N, Kurbatov V A, Mel'nik N N, Tsvetkov V A, Zhuravlev K S, Markov V A, Nikiforov A I 2001 Semicond. Sci. Technol. 10 1134

    [9]

    Duan M Y, Xu M, Zhou H P, Chen Q Y, Hu Z G, Dong C J 2008 Acta Phys. Sin. 57 6520 (in Chinese) [段满益, 徐明, 周海平, 陈青云, 胡志刚, 董成军 2008 物理学报 57 6520]

    [10]

    Palummo M, Onida G, Del Sole R, Stella A, Tognini P, Cheyssac P, Kofman R 2001 Phys. Stat. Sol. 10 1002

    [11]

    Chen X H 2013 Ph. D. Dissertation (Xiamen: Xiamen University) (in Chinese) [陈小红 2013 博士学位论文(厦门: 厦门大学)]

    [12]

    Cheng S L, Lu J, Shambat G, Yu H Y, Saraswat K, Vuckovic J, Nishi Y 2009 Opt. Express 17 10019

    [13]

    Hou Q Y, Dong H Y, Ying C, Ma W 2012 Acta Phys. Sin. 61 167102 (in Chinese) [侯清玉, 董红英, 迎春, 马文 2012 物理学报 61 167102]

    [14]

    Shen X J 2013 Ph. D. Dissertation (Suzhou: Suzhou University) (in Chinese) [申小娟 2013 博士学位论文(苏州: 苏州大学)]

    [15]

    Sun X C, Liu J F, Kimerling L C, Michel J 2009 Appl. Phys. Lett. 95 1103

    [16]

    Li M, Li J C 2006 Mater. Lett. 10 1025

    [17]

    Shea H R, Martel R, Avouris P 2000 Phys. Rev. Lett. 03 1152

    [18]

    Hu C Q, Tian Y, Wang J B, Sam Z, Cheng D Y, Chen Y, Zhang K, Zheng W T 2016 Vacumm 10 1016

    [19]

    Shen Y, Mueller G, Watanabe S, Gardner N, Munkholm A, Krames M 2007 Appl. Phys. Lett. 91 141101

    [20]

    Huang S H, Li C, Chen C Z, Zheng Y Y, Lai H K, Chen S Y 2012 Acta Phys. Sin. 61 036202 (in Chinese) [黄诗浩, 李成, 陈城钊, 郑元宇, 赖虹凯, 陈松岩 2012 物理学报 61 036202]

  • [1]

    Sharafi Z, Mohyeddine S, Mohammed S O, Kershi R M, Ravindra R P 2014 Phys. Res. Int. 10 1155

    [2]

    Li Y P, Li C X, Zhuo X, Liu Z T 2016 J. Alloys Compd. 10 1016

    [3]

    Jordan W B, Wagner S 2002 MRS Proc. 10 1557

    [4]

    Pan F C, Lin X L, Chen H M 2015 Acta Phys. Sin. 64 224218 (in Chinese) [潘凤春, 林雪玲, 陈焕铭 2015 物理学报 64 224218]

    [5]

    Ray S, Samaresh D, Singha R, Manna S, Achintya D 2011 Nanoscale Res. Lett. 02 224

    [6]

    Alireza S Z, Othaman S K, Ghoshal M, Mustafa K 2015 Chin. Phys. B 25 028103

    [7]

    Donat J A, Michael D, Gerlach J, Dirk R 2016 MRS Adv. 10 1557

    [8]

    Burbaev T M, Zavaritskaya T N, Kurbatov V A, Mel'nik N N, Tsvetkov V A, Zhuravlev K S, Markov V A, Nikiforov A I 2001 Semicond. Sci. Technol. 10 1134

    [9]

    Duan M Y, Xu M, Zhou H P, Chen Q Y, Hu Z G, Dong C J 2008 Acta Phys. Sin. 57 6520 (in Chinese) [段满益, 徐明, 周海平, 陈青云, 胡志刚, 董成军 2008 物理学报 57 6520]

    [10]

    Palummo M, Onida G, Del Sole R, Stella A, Tognini P, Cheyssac P, Kofman R 2001 Phys. Stat. Sol. 10 1002

    [11]

    Chen X H 2013 Ph. D. Dissertation (Xiamen: Xiamen University) (in Chinese) [陈小红 2013 博士学位论文(厦门: 厦门大学)]

    [12]

    Cheng S L, Lu J, Shambat G, Yu H Y, Saraswat K, Vuckovic J, Nishi Y 2009 Opt. Express 17 10019

    [13]

    Hou Q Y, Dong H Y, Ying C, Ma W 2012 Acta Phys. Sin. 61 167102 (in Chinese) [侯清玉, 董红英, 迎春, 马文 2012 物理学报 61 167102]

    [14]

    Shen X J 2013 Ph. D. Dissertation (Suzhou: Suzhou University) (in Chinese) [申小娟 2013 博士学位论文(苏州: 苏州大学)]

    [15]

    Sun X C, Liu J F, Kimerling L C, Michel J 2009 Appl. Phys. Lett. 95 1103

    [16]

    Li M, Li J C 2006 Mater. Lett. 10 1025

    [17]

    Shea H R, Martel R, Avouris P 2000 Phys. Rev. Lett. 03 1152

    [18]

    Hu C Q, Tian Y, Wang J B, Sam Z, Cheng D Y, Chen Y, Zhang K, Zheng W T 2016 Vacumm 10 1016

    [19]

    Shen Y, Mueller G, Watanabe S, Gardner N, Munkholm A, Krames M 2007 Appl. Phys. Lett. 91 141101

    [20]

    Huang S H, Li C, Chen C Z, Zheng Y Y, Lai H K, Chen S Y 2012 Acta Phys. Sin. 61 036202 (in Chinese) [黄诗浩, 李成, 陈城钊, 郑元宇, 赖虹凯, 陈松岩 2012 物理学报 61 036202]

  • [1] 丁华俊, 薛忠营, 魏星, 张波. 1 nm Al 插入层调节 NiGe/n-Ge 肖特基势垒. 物理学报, 2022, 71(20): 207302. doi: 10.7498/aps.71.20220320
    [2] 孙玉鑫, 吴德凡, 赵统, 兰武, 杨德仁, 马向阳. 直拉硅单晶的机械强度: 锗和氮共掺杂的效应. 物理学报, 2021, 70(9): 098101. doi: 10.7498/aps.70.20201803
    [3] 王尘, 许怡红, 李成, 林海军, 赵铭杰. 基于两步退火法提升Al/n+Ge欧姆接触及Ge n+/p结二极管性能. 物理学报, 2019, 68(17): 178501. doi: 10.7498/aps.68.20190699
    [4] 潘凤春, 林雪玲, 曹志杰, 李小伏. Fe, Co, Ni掺杂GaSb的电子结构和光学性质. 物理学报, 2019, 68(18): 184202. doi: 10.7498/aps.68.20190290
    [5] 余志强, 张昌华, 郎建勋. P掺杂硅纳米管电子结构与光学性质的研究. 物理学报, 2014, 63(6): 067102. doi: 10.7498/aps.63.067102
    [6] 李倩倩, 郝秋艳, 李英, 刘国栋. 稀土元素(Ce, Pr)掺杂GaN的电子结构和光学性质的理论研究. 物理学报, 2013, 62(1): 017103. doi: 10.7498/aps.62.017103
    [7] 李春霞, 党随虎. Ag, Zn掺杂对CdS电子结构和光学性质的影响. 物理学报, 2012, 61(1): 017202. doi: 10.7498/aps.61.017202
    [8] 冯现徉, 逯瑶, 蒋雷, 张国莲, 张昌文, 王培吉. In掺杂ZnO超晶格光学性质的研究. 物理学报, 2012, 61(5): 057101. doi: 10.7498/aps.61.057101
    [9] 于峰, 王培吉, 张昌文. Al掺杂SnO2 材料电子结构和光学性质. 物理学报, 2011, 60(2): 023101. doi: 10.7498/aps.60.023101
    [10] 乐伶聪, 马新国, 唐豪, 王扬, 李翔, 江建军. 过渡金属掺杂钛酸纳米管的电子结构和光学性质研究. 物理学报, 2010, 59(2): 1314-1320. doi: 10.7498/aps.59.1314
    [11] 梁伟华, 丁学成, 褚立志, 邓泽超, 郭建新, 吴转花, 王英龙. 镍掺杂硅纳米线电子结构和光学性质的第一性原理研究. 物理学报, 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [12] 刘强, 程新路, 李德华, 杨则金. Al和N共掺对Zn1-xMgxO光学性质的影响. 物理学报, 2010, 59(12): 8829-8835. doi: 10.7498/aps.59.8829
    [13] 林竹, 郭志友, 毕艳军, 董玉成. Cu掺杂的AlN铁磁性和光学性质的第一性原理研究. 物理学报, 2009, 58(3): 1917-1923. doi: 10.7498/aps.58.1917
    [14] 胡志刚, 段满益, 徐明, 周勋, 陈青云, 董成军, 令狐荣锋. Fe和Ni共掺杂ZnO的电子结构和光学性质. 物理学报, 2009, 58(2): 1166-1172. doi: 10.7498/aps.58.1166
    [15] 郭建云, 郑 广, 何开华, 陈敬中. Al,Mg掺杂GaN电子结构及光学性质的第一性原理研究. 物理学报, 2008, 57(6): 3740-3746. doi: 10.7498/aps.57.3740
    [16] 段满益, 徐 明, 周海平, 陈青云, 胡志刚, 董成军. 碳掺杂ZnO的电子结构和光学性质. 物理学报, 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [17] 邢海英, 范广涵, 赵德刚, 何 苗, 章 勇, 周天明. Mn掺杂GaN电子结构和光学性质研究. 物理学报, 2008, 57(10): 6513-6519. doi: 10.7498/aps.57.6513
    [18] 丁迎春, 向安平, 徐 明, 祝文军. 掺稀土元素(Y,La)的γ-Si3N4的电子结构和光学性质. 物理学报, 2007, 56(10): 5996-6002. doi: 10.7498/aps.56.5996
    [19] 沈益斌, 周 勋, 徐 明, 丁迎春, 段满益, 令狐荣锋, 祝文军. 过渡金属掺杂ZnO的电子结构和光学性质. 物理学报, 2007, 56(6): 3440-3445. doi: 10.7498/aps.56.3440
    [20] 潘洪哲, 徐 明, 祝文军, 周海平. β-Si3N4电子结构和光学性质的第一性原理研究. 物理学报, 2006, 55(7): 3585-3589. doi: 10.7498/aps.55.3585
计量
  • 文章访问数:  6081
  • PDF下载量:  189
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-18
  • 修回日期:  2018-04-19
  • 刊出日期:  2018-07-05

/

返回文章
返回