-
介绍了与斯格明子相关的螺旋磁有序体系的临界行为.首先阐述了连续相变中的临界现象、临界指数、标度律、普适性等概念;随后介绍了磁相变体系中几种临界指数的获得方法,包括直流磁性迭代法、磁熵变法;进而,分析了几类与斯格明子相关的螺旋磁有序体系的临界行为.MnSi是典型的斯格明子材料,临界指数显示其磁性行为符合三重临界行为.MnSi的临界行为揭示:外磁场可以抑制这一体系在零场下的一级相变,使其转变为二级相变,从而在螺旋磁有序、锥形磁有序、顺磁相的三相交汇点形成三重临界点.斯格明子体系FeGe和Cu2OSeO3的临界行为符合三维海森伯相互作用,表明它们的磁性行为主要是由近邻的各向同性的自旋耦合作用所决定;而Fe1-xCoxSi和新发现的斯格明子体系Fe1.5-xCoxRh0.5MoN的临界行为显示Co掺杂可以有效地调制其中的磁性耦合.对螺旋磁有序体系的临界行为研究表明,尽管这些体系都表现出类似的斯格明子态,但是它们的磁性耦合机制却大不相同,并且其耦合机制可以受到外界手段的调制.最后,根据普适性原理和标度方程,阐述了一种构建磁场诱导相变体系在临界温度附近H-T相图的方法.Study of critical phenomena plays a key role in developing the theory of phase transition. In this article, we mainly review some new experimental results about the critical phenomena reported recently in the helimagentic ordering materials. These materials exhibit a kind of a vortex-like spin texture so-called skyrmion phase. The skyrmion phase has great potential applications in the new spin-based storage due to the topologically protected stability, nanometric size, and current-driven motion. Generally, the skyrmion state exists in a helimagentic system due to the DzyaloshinskiiMoriya (DM) interaction which forms in the crystal structure without inversion symmetry. It usually emerges just below the helimagentic phase transition temperature TC under a certain temperature and magnetic field. In this review article, firstly, we introduce some basic concepts about the phase transition, such as critical phenomenon, critical exponents, scaling law, and universality. Secondly, we discuss two different methods which can help us to obtain the critical exponents, i.e., the iteration method based on the isothermal dc-magnetization and the fitting technique based on the magnetic entropy change. Both methods are extensively used in the current study of critical phenomena Thirdly, we analyze and outline some latest studies of critical behaviors and critical exponents for several typical helimagnetic systems with skyrmion state, such as MnSi, FeGe, Cu2OSeO3, Fe1-xCoxSi, and Fe1.5-xCoxRh0.5MoN. The B20 compound MnSi is a typical skyrmion material, which undergoes a paramagnetic-to-helimagnetic phase transition at ~30.5 K and the skyrmion phase appears just below TC as an appropriate external magnetic field is applied. Investigations show that critical exponents of MnSi belong in the universality class of a tricritical mean-field model, implying the existence of a long-rang magnetic interaction in this system. The critical behavior of MnSi reveals that its first-order phase transition can be driven into a second-order phase transition by the action of external magnetic field, where a field-induced tricritical point is found among the helimagnetic, conical, and paramagnetic phases in MnSi system. Unlike MnSi, the critical exponent of the near-room-temperature skyrmion system FeGe, which undergoes a helimagentic phase transition at 278 K, belong to the three-dimensional Heisenberg model. The critical behavior of Cu2OSeO3 is similar to that of FeGe, which indicates that the magnetic interactions in these two systems are dominated by the short-range nearestneighbor isotropic magnetic coupling. In addition, studies revealed that magnetic interaction and critical behavior of the skyrmion system can be effectively modulated by doping. The critical exponents of Fe1-xCoxSi and the newly founded skyrmion system of Fe1.5-xCoxRh0.5MoN indicated that the doping concentration of Co can change and affect their critical behaviors. In addition, it was demonstrated that the doping of Co enhanced the anisotropic magnetic coupling in Fe1-xCoxSi while it suppressed that in Fe1.5-xCoxRh0.5MoN. Fourthly, according to the universality and the scaling equations, we proposed a method to construct the detailed H-T phase diagram around the phase transition temperature in the system exhibiting field-induced phase transition. Finally, we make a brief summary and suggest our perspectives of the study of critical phenomena in helimagentic system. The results of critical behaviors indicate that although all these helimagentic systems exhibit a similar skyrmion phase, their essential magnetic interactions belong in different universality classes, indicating different types of magnetic coupling in these systems. Furthermore, the results also suggest that magnetic coupling can also be effectively tuned by the external modulation.
-
Keywords:
- skyrmion /
- helimagnetism /
- critical exponent /
- universality
[1] Mhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Bni P 2009 Science 323 915
[2] Seki S, Yu X Z, Ishiwata S, Tokura Y 2012 Science 336 198
[3] Jiang W J, Chen G, Liu K, Zang J D, Velthuis S G E, Hoffmann A 2017 Phys. Rep. 704 1
[4] Zheng F S, Li H, Wang S S, Song D S, Jin C M, Wei W S, Kovcs A, Zang J D, Tian M L, Zhang Y H, Du H F, Dunin-Borkowski R E 2017 Phys. Rev. Lett. 119 197205
[5] Munzer W, Neubauer A, Adams T, Muhlbauer S, Franz C, Jonietz F, Georgii R, Boni P, Pedersen B, Schmidt M, Rosch A, Pfleiderer C 2010 Phys. Rev. B 81 041203
[6] Rler U K, Bogdanov A N, Pfleiderer C 2006 Nature 442 797
[7] Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 456 901
[8] Psaroudaki C, Hoffman S, Klinovaja J, Loss D 2017 Phys. Rev. X 7 041045
[9] Kurumaji T, Nakajima T, Ukleev V, Feoktystov A, Arima T, Kakurai K, Tokura Y 2017 Phys. Rev. Lett. 119 237201
[10] Kharkov Y A, Sushkov O P, Mostovoy M 2017 Phys. Rev. Lett. 119 207201
[11] Jiang W J, Upadhyaya P, Zhang W, Yu G Q, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, Velthuis S G E, Hoffmann A 2015 Science 349 283
[12] Nayak A K, Kumar V, Ma T P, Werner P, Pippe E, Sahoo R, Damay F, Rler U K, Felser C, Parkin S S P 2017 Nature 548 561
[13] Soumyanarayanan A, Reyren N, Fert A, Panagopoulos C 2016 Nature 539 509
[14] Zhang X C, Xia J, Zhou Y, Liu X X, Zhang H, Ezawa M 2017 Nat. Commun. 8 1717
[15] Mohseni S, Sani S, Persson J, Nguyen T, Chung S, Pogoryelov Y, Muduli P, Iacocca E, Eklund A, Dumas R, Bonetti S, Deac A, Hoefer M, Akerman J 2013 Science 339 1295
[16] Zhang X, Xia J, Zhou Y, Wang D, Liu X, Zhao W, Ezawa M 2016 Phys. Rev. B 94 094420
[17] Du H F, Ning W, Tian M L, Zhang Y H 2013 Phys. Rev. B 87 014401
[18] Togawa Y, Kousaka Y, Nishihara S, Inoue K, Akimitsu J, Ovchinnikov A S, Kishine J 2013 Phys. Rev. Lett. 111 197204
[19] Rybakov F, Borisov A, Blge S, Kiselev N 2015 Phys. Rev. Lett. 115 117201
[20] Skyrme T H R 1962 Nucl. Phys. 31 556
[21] Brown G, Rho M 2010 The Multifaced Skyrmions (Singapore: World Scientific)
[22] Bogdanov A N, Yablonskii D A 1989 Sov. Phys. JETP 68 101
[23] Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G, Bni P 2009 Phys. Rev. Lett. 102 186602
[24] Ishikawa Y, Arai M 1984 J. Phys. Soc. Jpn. 53 2726
[25] Thessieu C, Pfleiderer C, Stepanov A N, Flouquet J 1997 J. Phys.: Condens. Matter 9 6677
[26] Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106
[27] Grigoriev S V, Dyadkin V A, Moskvin E V, Lamago D, Wolf T, Eckerlebe H, Maleyev S V 2009 Phys. Rev. B 79 144417
[28] Shibata K, Yu X Z, Hara T, Morikawa D, Kanazawa N, Kimoto K, Ishiwata S, Matsui Y, Tokura Y 2013 Nat. Nanotechnol. 8 723
[29] Adams T, Chacon A, Wagner M, Bauer A, Brandl G, Pedersen B, Berger H, Lemmens P, Pfleiderer C 2012 Phys. Rev. Lett. 108 237204
[30] Ding H F, Schmid A K, Li D Q, Guslienko K Y, Bader S D 2005 Phys. Rev. Lett. 94 157202
[31] Sonntag A, HermenauJ, Krause S, Wiesendanger R 2014 Phys. Rev. Lett. 113 077202
[32] Simon E, Palotas K, Rozsa L, Udvardi L, Szunyogh L 2014 Phys. Rev. B 90 094410
[33] Miao B F, Sun L, Wu Y W, Tao X D, Xiong X, Wen Y, Cao R X, Wang P, Wu D, Zhan Q F, You B, Du J, Li R W, Ding H F 2014 Phys. Rev. B 90 174411
[34] Dai Y Y, Wang H, Tao P, Yang T, Ren W J, Zhang Z D 2013 Phys. Rev. B 88 054403
[35] Siegfried S A, Altynbaev E V, Chubova N M, Dyadkin V, Chernyshov D, Moskvin E V, Menze D, Heinemann A, Schreyer A, Grigorie S V 2015 Phys. Rev. B 91 184406
[36] Nagaosa N, Tokura Y 2013 Nat. Nanotechnol. 8 89
[37] Jonietz F, Muhlbauer S, Pfleiderer C, Neubauer A, Mnzer W, Bauer A, Adams T, Georgii R, Boni P, Duine R, Everschor K, Garst M, Rosch A 2010 Science 330 1648
[38] Schulz T, Ritz R, Bauer A, Halder M, Wagner M, Franz C, Pfleiderer C, Everschor K, Garst M, Rosch A 2012 Nat. Phys. 8 301
[39] Yu X Z, Kanazawa N, Zhang W Z, Nnagai T, Hara T, Kimoto K, Mmatsui Y, Oonose Y, Tokura Y 2012 Nat. Commun. 3 988
[40] Iwasaki J, Mochizuki M, Nagaosa N 2013 Nat. Commun. 4 1463
[41] Romming N, Hanneken C, Menzel M, Bickel J, Wolter B, Bergmann K, Kubetzka A, Wiesendanger R 2013 Science 341 636
[42] Yu L, Hao B L 1992 Phase Transition and Critical Phenomenon (Beijing: Science Press) p9 (in Chinese) [于渌, 郝柏林 1992 相变和临界现象 (北京: 科学出版社) 第9 页]
[43] Yu L, Hao B L 1992 Phase Transition and Critical Phenomenon (Beijing: Science Press) p83 (in Chinese) [于渌, 郝柏林 1992 相变和临界现象 (北京: 科学出版社) 第83页]
[44] Jiang S T, Li W L 2003 Magnetic Physics in Condensed Matter (Beijing: Science Press) pp173-182 (in Chinese) [姜寿亭, 李卫 2003 凝聚态磁性物理 (北京: 科学出版社) 第173182页]
[45] Stanley H E 1971 Introduction to Phase Transitions and Critical Phenomena (London: Oxford University Press)
[46] Ghosh K, Lobb C J, Greene R L, Karabashev S G, Shulyatev D A, Arsenov A A, Mukovskii Y 1998 Phys. Rev. Lett. 81 4740
[47] Arrott A 1957 Phys. Rev. 108 1394
[48] Yeung I, Roshko R, Williams G 1986 Phys. Rev. B 34 3456
[49] Levy L 2000 Magnetism and Superconductivity (Berlin: Springer)
[50] Banerjee S 1964 Phys. Lett. 12 16
[51] Phan M H, Franco V, Bingham N S, Srikanth H, Hur N H, Yu S C 2010 J Alloys Compd. 508 238
[52] Arrott A, Noakes J 1967 Phys. Rev. Lett. 19 786
[53] Zhang L, Wang B S, Sun Y P, Tong P, Fan J Y, Zhang C J, Pi L, Zhang Y H 2012 Phys. Rev. B 85 104419
[54] Fisher M 1967 Rep. Prog. Phys. 30 615
[55] Fan J Y, Ling L S, Hong B, Zhang L, Pi L, Zhang H Y 2010 Phys. Rev. B 81 144426
[56] Kouvel J, Fisher M 1964 Phys. Rev. A 136 1626
[57] Pecharsky V, Gschneidner K 1999 J. Magn. Magn. Mater. 200 44
[58] Franco V, Blazquez J, Conde A 2006 Appl. Phys. Lett. 89 222512
[59] Franco V, Conde A 2010 Inter. J. Ref. 33 465
[60] Fan J Y, Pi L, Zhang L, Tong W, Ling L S, Hong B, Shi Y G, Zhang W C, Lu D, Zhang Y H 2011 Appl. Phys. Lett. 98 072508
[61] Han H, Zhang L, Zhu X D, Du H F, Ge M, Ling L S, Pi L, Zhang C J, Zhang Y H 2017 J. Alloys Compd. 693 389
[62] Zhang L, Fan J Y, Tong W, Ling L S, Pi L, Zhang Y H 2012 Physica B 407 3543
[63] Samatham S S, Ganesan V 2017 Phys. Rev. B 95 115118
[64] Manyala N, Sidis Y, DiTusa J, Aeppli G, Young D, Fisk Z 2000 Nature 404 581
[65] Pfleiderer C, Julian S R, Lonzarich G G 2001 Nature 414 427
[66] Watanabe H, Parameswaran S A, Raghu S, Vishwanath A 2014 Phys. Rev. B 90 045145
[67] Pfleiderer C, McMullan G J, Julian S R, Lonzarich G G 1997 Phys. Rev. B 55 8330
[68] Janoschek M, Garst M, Bauer A, Krautscheid P, Georgii R, Boni P, Pfleiderer C 2013 Phys. Rev. B 87 134407
[69] Buhrandt S, Fritz L 2013 Phys. Rev. B 88 195137
[70] Huang K 1987 Statistical Mechanics (2nd Ed.) (New York: Wiley)
[71] Bauer A, Garst M, Pfleiderer C 2013 Phys. Rev. Lett. 110 177207
[72] Brazovskii S A, Eksp Z, Fiz T 1975 Sov. Phys. JETP 41 85
[73] Zhang L, Menzel D, Jin C, Du H F, Ge M, Zhang C J, Pi L, Tian M L, Zhang Y H 2015 Phys. Rev. B 91 024403
[74] Chattopadhyay M, Arora P, Roy S 2009 J. Phys.: Condens. Matter 21 296003
[75] Fisher M E, Ma S K, Nickel B G 1972 Phys. Rev. Lett. 29 917
[76] Fischer S F, Kaul S N, Kronmuller H 2002 Phys. Rev. B 65 064443
[77] Pramanik A K, Banerjee A 2009 Phys. Rev. B 79 214426
[78] Grigoriev S V, Maleyev S V, Okorokov A I, Chetverikov Y O, Georgii R, Boni P, Lamago D, Eckerlebe H, Pranzas K 2005 Phys. Rev. B 72 134420
[79] Wilhelm H, Baenitz M, Schmidt M, Rler U K, Leonov A A, Bogdanov A N 2011 Phys. Rev. Lett. 107 127203
[80] Lebech B, Bernhard J, Freltoft T 1989 J. Phys.: Condens. Matter 1 6105
[81] Shibata K, Iwasaki J, Kanazawa N, Aizawa S, Tanigaki T, Shirai M, Nakajima T, Kubota M, Kawasaki M, Park H S, Shindo D, Nagaosa N, Tokura Y 2015 Nat. Naonotechol. 10 589
[82] Koretsune T, Nagaosa N, Arita R 2015 Sci. Rep. 5 13302
[83] Barla A, Wilhelm H, Forthaus M K, Strohm C, Rffer R, Schmidt M, Koepernik K, Rler U K, Abd-Elmeguid M M 2015 Phys. Rev. Lett. 114 016803
[84] Zhang L, Han H, Ge M, Du H, Jin C, Wei W, Fan J, Zhang C, Pi L, Zhang Y 2016 Sci. Rep. 6 22397
[85] Wilhelm H, Leonov A O, Rler U K, Burger P, Hardy F, Meingast C, Gruner M E, Schnelle W, Schmidt M, Baenitz M 2016 Phys. Rev. B 94 144424
[86] Xu L S, Fan J Y, Sun W F, Zhu Y, Hu D Z, Liu J D, Ji Y D, Shi D N, Yang H 2017 Appl. Phys. Lett. 111 052406
[87] Hamann A, Lamago D, Wolf T, Lhneysen H V, Reznik D 2011 Phys. Rev. Lett. 107 037207
[88] Yang J H, Li Z L, Lu X Z, Whangbo M H, Wei S H, Gong X G, Xiang H J 2012 Phys. Rev. Lett. 109 107203
[89] Seki S, Ishiwata S, Tokura Y 2012 Phys. Rev. B 86 060403
[90] White J S, Levatić I, Omrani A A, Egetenmeyer N, Pra K, Živković I, Gavilano J L, Kohlbrecher J, Bartkowiak M, Berger H, Rnnow H M 2012 J. Phys.: Condens. Matter 24 432201
[91] Živković I, White J S, Ronnow H M, Pra K, Berger H 2014 Phys. Rev. B 89 060401
[92] Chattopadhyay M K, Roy S B, Chaudhary S 2002 Phys. Rev. B 65 132409
[93] Jiang W J, Zhou X Z, Williams G 2010 Phys. Rev. B 82 144424
[94] Zhang L, Menzel D, Han H, Jin C M, Du H F, Fan J Y, Ge M, Ling L S, Zhang C J, Pi L, Zhang Y H 2016 EPL 115 67006
[95] Han H, Menzel D, Liu W, Ling L S, Du H F, Pi L, Zhang C J, Zhang L, Zhang Y H 2017 Mater. Res. Bull. 94 500
[96] Li W, Jin C M, Che R C, Wei W S, Lin L S, Zhang L, Du H F, Tian M L, Zang J D 2016 Phys. Rev. B 93 060409
[97] Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241
[98] Moriya T 1960 Phys. Rev. 120 91
[99] Battle P D, Grandjean F, Longc G J, Oldhama S E 2007 J. Mater. Chem. 17 4785
[100] Han H, Wei W S, Liu W, Dai Y H, Du H F, Pi L, Zhang C J, Zhang L, Zhang Y H 2018 J. Alloys Compd. 739 85
[101] Togawa Y, Koyama T, Takayanagi K, Mori S, Kousaka Y, Akimitsu J, Nishihara S, Inoue K, Ovchinnikov A S, Kishine J 2012 Phys. Rev. Lett. 108 107202
[102] Togawa Y, Kousaka Y, Inoue K, Kishine J 2016 J. Phys. Soc. Jpn. 85 112001
[103] Masaki Y, Stamps R L 2017 Phys. Rev. B 95 024418
[104] Han H, Zhang L, Sapkota D, Hao N, Ling L S, Du H F, Pi L, Zhang C J, Mandrus D G, Zhang Y H 2017 Phys. Rev. B 96 094439
[105] Kaul S N 1985 J. Magn. Magn. Mater. 3 5
-
[1] Mhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Bni P 2009 Science 323 915
[2] Seki S, Yu X Z, Ishiwata S, Tokura Y 2012 Science 336 198
[3] Jiang W J, Chen G, Liu K, Zang J D, Velthuis S G E, Hoffmann A 2017 Phys. Rep. 704 1
[4] Zheng F S, Li H, Wang S S, Song D S, Jin C M, Wei W S, Kovcs A, Zang J D, Tian M L, Zhang Y H, Du H F, Dunin-Borkowski R E 2017 Phys. Rev. Lett. 119 197205
[5] Munzer W, Neubauer A, Adams T, Muhlbauer S, Franz C, Jonietz F, Georgii R, Boni P, Pedersen B, Schmidt M, Rosch A, Pfleiderer C 2010 Phys. Rev. B 81 041203
[6] Rler U K, Bogdanov A N, Pfleiderer C 2006 Nature 442 797
[7] Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 456 901
[8] Psaroudaki C, Hoffman S, Klinovaja J, Loss D 2017 Phys. Rev. X 7 041045
[9] Kurumaji T, Nakajima T, Ukleev V, Feoktystov A, Arima T, Kakurai K, Tokura Y 2017 Phys. Rev. Lett. 119 237201
[10] Kharkov Y A, Sushkov O P, Mostovoy M 2017 Phys. Rev. Lett. 119 207201
[11] Jiang W J, Upadhyaya P, Zhang W, Yu G Q, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, Velthuis S G E, Hoffmann A 2015 Science 349 283
[12] Nayak A K, Kumar V, Ma T P, Werner P, Pippe E, Sahoo R, Damay F, Rler U K, Felser C, Parkin S S P 2017 Nature 548 561
[13] Soumyanarayanan A, Reyren N, Fert A, Panagopoulos C 2016 Nature 539 509
[14] Zhang X C, Xia J, Zhou Y, Liu X X, Zhang H, Ezawa M 2017 Nat. Commun. 8 1717
[15] Mohseni S, Sani S, Persson J, Nguyen T, Chung S, Pogoryelov Y, Muduli P, Iacocca E, Eklund A, Dumas R, Bonetti S, Deac A, Hoefer M, Akerman J 2013 Science 339 1295
[16] Zhang X, Xia J, Zhou Y, Wang D, Liu X, Zhao W, Ezawa M 2016 Phys. Rev. B 94 094420
[17] Du H F, Ning W, Tian M L, Zhang Y H 2013 Phys. Rev. B 87 014401
[18] Togawa Y, Kousaka Y, Nishihara S, Inoue K, Akimitsu J, Ovchinnikov A S, Kishine J 2013 Phys. Rev. Lett. 111 197204
[19] Rybakov F, Borisov A, Blge S, Kiselev N 2015 Phys. Rev. Lett. 115 117201
[20] Skyrme T H R 1962 Nucl. Phys. 31 556
[21] Brown G, Rho M 2010 The Multifaced Skyrmions (Singapore: World Scientific)
[22] Bogdanov A N, Yablonskii D A 1989 Sov. Phys. JETP 68 101
[23] Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G, Bni P 2009 Phys. Rev. Lett. 102 186602
[24] Ishikawa Y, Arai M 1984 J. Phys. Soc. Jpn. 53 2726
[25] Thessieu C, Pfleiderer C, Stepanov A N, Flouquet J 1997 J. Phys.: Condens. Matter 9 6677
[26] Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106
[27] Grigoriev S V, Dyadkin V A, Moskvin E V, Lamago D, Wolf T, Eckerlebe H, Maleyev S V 2009 Phys. Rev. B 79 144417
[28] Shibata K, Yu X Z, Hara T, Morikawa D, Kanazawa N, Kimoto K, Ishiwata S, Matsui Y, Tokura Y 2013 Nat. Nanotechnol. 8 723
[29] Adams T, Chacon A, Wagner M, Bauer A, Brandl G, Pedersen B, Berger H, Lemmens P, Pfleiderer C 2012 Phys. Rev. Lett. 108 237204
[30] Ding H F, Schmid A K, Li D Q, Guslienko K Y, Bader S D 2005 Phys. Rev. Lett. 94 157202
[31] Sonntag A, HermenauJ, Krause S, Wiesendanger R 2014 Phys. Rev. Lett. 113 077202
[32] Simon E, Palotas K, Rozsa L, Udvardi L, Szunyogh L 2014 Phys. Rev. B 90 094410
[33] Miao B F, Sun L, Wu Y W, Tao X D, Xiong X, Wen Y, Cao R X, Wang P, Wu D, Zhan Q F, You B, Du J, Li R W, Ding H F 2014 Phys. Rev. B 90 174411
[34] Dai Y Y, Wang H, Tao P, Yang T, Ren W J, Zhang Z D 2013 Phys. Rev. B 88 054403
[35] Siegfried S A, Altynbaev E V, Chubova N M, Dyadkin V, Chernyshov D, Moskvin E V, Menze D, Heinemann A, Schreyer A, Grigorie S V 2015 Phys. Rev. B 91 184406
[36] Nagaosa N, Tokura Y 2013 Nat. Nanotechnol. 8 89
[37] Jonietz F, Muhlbauer S, Pfleiderer C, Neubauer A, Mnzer W, Bauer A, Adams T, Georgii R, Boni P, Duine R, Everschor K, Garst M, Rosch A 2010 Science 330 1648
[38] Schulz T, Ritz R, Bauer A, Halder M, Wagner M, Franz C, Pfleiderer C, Everschor K, Garst M, Rosch A 2012 Nat. Phys. 8 301
[39] Yu X Z, Kanazawa N, Zhang W Z, Nnagai T, Hara T, Kimoto K, Mmatsui Y, Oonose Y, Tokura Y 2012 Nat. Commun. 3 988
[40] Iwasaki J, Mochizuki M, Nagaosa N 2013 Nat. Commun. 4 1463
[41] Romming N, Hanneken C, Menzel M, Bickel J, Wolter B, Bergmann K, Kubetzka A, Wiesendanger R 2013 Science 341 636
[42] Yu L, Hao B L 1992 Phase Transition and Critical Phenomenon (Beijing: Science Press) p9 (in Chinese) [于渌, 郝柏林 1992 相变和临界现象 (北京: 科学出版社) 第9 页]
[43] Yu L, Hao B L 1992 Phase Transition and Critical Phenomenon (Beijing: Science Press) p83 (in Chinese) [于渌, 郝柏林 1992 相变和临界现象 (北京: 科学出版社) 第83页]
[44] Jiang S T, Li W L 2003 Magnetic Physics in Condensed Matter (Beijing: Science Press) pp173-182 (in Chinese) [姜寿亭, 李卫 2003 凝聚态磁性物理 (北京: 科学出版社) 第173182页]
[45] Stanley H E 1971 Introduction to Phase Transitions and Critical Phenomena (London: Oxford University Press)
[46] Ghosh K, Lobb C J, Greene R L, Karabashev S G, Shulyatev D A, Arsenov A A, Mukovskii Y 1998 Phys. Rev. Lett. 81 4740
[47] Arrott A 1957 Phys. Rev. 108 1394
[48] Yeung I, Roshko R, Williams G 1986 Phys. Rev. B 34 3456
[49] Levy L 2000 Magnetism and Superconductivity (Berlin: Springer)
[50] Banerjee S 1964 Phys. Lett. 12 16
[51] Phan M H, Franco V, Bingham N S, Srikanth H, Hur N H, Yu S C 2010 J Alloys Compd. 508 238
[52] Arrott A, Noakes J 1967 Phys. Rev. Lett. 19 786
[53] Zhang L, Wang B S, Sun Y P, Tong P, Fan J Y, Zhang C J, Pi L, Zhang Y H 2012 Phys. Rev. B 85 104419
[54] Fisher M 1967 Rep. Prog. Phys. 30 615
[55] Fan J Y, Ling L S, Hong B, Zhang L, Pi L, Zhang H Y 2010 Phys. Rev. B 81 144426
[56] Kouvel J, Fisher M 1964 Phys. Rev. A 136 1626
[57] Pecharsky V, Gschneidner K 1999 J. Magn. Magn. Mater. 200 44
[58] Franco V, Blazquez J, Conde A 2006 Appl. Phys. Lett. 89 222512
[59] Franco V, Conde A 2010 Inter. J. Ref. 33 465
[60] Fan J Y, Pi L, Zhang L, Tong W, Ling L S, Hong B, Shi Y G, Zhang W C, Lu D, Zhang Y H 2011 Appl. Phys. Lett. 98 072508
[61] Han H, Zhang L, Zhu X D, Du H F, Ge M, Ling L S, Pi L, Zhang C J, Zhang Y H 2017 J. Alloys Compd. 693 389
[62] Zhang L, Fan J Y, Tong W, Ling L S, Pi L, Zhang Y H 2012 Physica B 407 3543
[63] Samatham S S, Ganesan V 2017 Phys. Rev. B 95 115118
[64] Manyala N, Sidis Y, DiTusa J, Aeppli G, Young D, Fisk Z 2000 Nature 404 581
[65] Pfleiderer C, Julian S R, Lonzarich G G 2001 Nature 414 427
[66] Watanabe H, Parameswaran S A, Raghu S, Vishwanath A 2014 Phys. Rev. B 90 045145
[67] Pfleiderer C, McMullan G J, Julian S R, Lonzarich G G 1997 Phys. Rev. B 55 8330
[68] Janoschek M, Garst M, Bauer A, Krautscheid P, Georgii R, Boni P, Pfleiderer C 2013 Phys. Rev. B 87 134407
[69] Buhrandt S, Fritz L 2013 Phys. Rev. B 88 195137
[70] Huang K 1987 Statistical Mechanics (2nd Ed.) (New York: Wiley)
[71] Bauer A, Garst M, Pfleiderer C 2013 Phys. Rev. Lett. 110 177207
[72] Brazovskii S A, Eksp Z, Fiz T 1975 Sov. Phys. JETP 41 85
[73] Zhang L, Menzel D, Jin C, Du H F, Ge M, Zhang C J, Pi L, Tian M L, Zhang Y H 2015 Phys. Rev. B 91 024403
[74] Chattopadhyay M, Arora P, Roy S 2009 J. Phys.: Condens. Matter 21 296003
[75] Fisher M E, Ma S K, Nickel B G 1972 Phys. Rev. Lett. 29 917
[76] Fischer S F, Kaul S N, Kronmuller H 2002 Phys. Rev. B 65 064443
[77] Pramanik A K, Banerjee A 2009 Phys. Rev. B 79 214426
[78] Grigoriev S V, Maleyev S V, Okorokov A I, Chetverikov Y O, Georgii R, Boni P, Lamago D, Eckerlebe H, Pranzas K 2005 Phys. Rev. B 72 134420
[79] Wilhelm H, Baenitz M, Schmidt M, Rler U K, Leonov A A, Bogdanov A N 2011 Phys. Rev. Lett. 107 127203
[80] Lebech B, Bernhard J, Freltoft T 1989 J. Phys.: Condens. Matter 1 6105
[81] Shibata K, Iwasaki J, Kanazawa N, Aizawa S, Tanigaki T, Shirai M, Nakajima T, Kubota M, Kawasaki M, Park H S, Shindo D, Nagaosa N, Tokura Y 2015 Nat. Naonotechol. 10 589
[82] Koretsune T, Nagaosa N, Arita R 2015 Sci. Rep. 5 13302
[83] Barla A, Wilhelm H, Forthaus M K, Strohm C, Rffer R, Schmidt M, Koepernik K, Rler U K, Abd-Elmeguid M M 2015 Phys. Rev. Lett. 114 016803
[84] Zhang L, Han H, Ge M, Du H, Jin C, Wei W, Fan J, Zhang C, Pi L, Zhang Y 2016 Sci. Rep. 6 22397
[85] Wilhelm H, Leonov A O, Rler U K, Burger P, Hardy F, Meingast C, Gruner M E, Schnelle W, Schmidt M, Baenitz M 2016 Phys. Rev. B 94 144424
[86] Xu L S, Fan J Y, Sun W F, Zhu Y, Hu D Z, Liu J D, Ji Y D, Shi D N, Yang H 2017 Appl. Phys. Lett. 111 052406
[87] Hamann A, Lamago D, Wolf T, Lhneysen H V, Reznik D 2011 Phys. Rev. Lett. 107 037207
[88] Yang J H, Li Z L, Lu X Z, Whangbo M H, Wei S H, Gong X G, Xiang H J 2012 Phys. Rev. Lett. 109 107203
[89] Seki S, Ishiwata S, Tokura Y 2012 Phys. Rev. B 86 060403
[90] White J S, Levatić I, Omrani A A, Egetenmeyer N, Pra K, Živković I, Gavilano J L, Kohlbrecher J, Bartkowiak M, Berger H, Rnnow H M 2012 J. Phys.: Condens. Matter 24 432201
[91] Živković I, White J S, Ronnow H M, Pra K, Berger H 2014 Phys. Rev. B 89 060401
[92] Chattopadhyay M K, Roy S B, Chaudhary S 2002 Phys. Rev. B 65 132409
[93] Jiang W J, Zhou X Z, Williams G 2010 Phys. Rev. B 82 144424
[94] Zhang L, Menzel D, Han H, Jin C M, Du H F, Fan J Y, Ge M, Ling L S, Zhang C J, Pi L, Zhang Y H 2016 EPL 115 67006
[95] Han H, Menzel D, Liu W, Ling L S, Du H F, Pi L, Zhang C J, Zhang L, Zhang Y H 2017 Mater. Res. Bull. 94 500
[96] Li W, Jin C M, Che R C, Wei W S, Lin L S, Zhang L, Du H F, Tian M L, Zang J D 2016 Phys. Rev. B 93 060409
[97] Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241
[98] Moriya T 1960 Phys. Rev. 120 91
[99] Battle P D, Grandjean F, Longc G J, Oldhama S E 2007 J. Mater. Chem. 17 4785
[100] Han H, Wei W S, Liu W, Dai Y H, Du H F, Pi L, Zhang C J, Zhang L, Zhang Y H 2018 J. Alloys Compd. 739 85
[101] Togawa Y, Koyama T, Takayanagi K, Mori S, Kousaka Y, Akimitsu J, Nishihara S, Inoue K, Ovchinnikov A S, Kishine J 2012 Phys. Rev. Lett. 108 107202
[102] Togawa Y, Kousaka Y, Inoue K, Kishine J 2016 J. Phys. Soc. Jpn. 85 112001
[103] Masaki Y, Stamps R L 2017 Phys. Rev. B 95 024418
[104] Han H, Zhang L, Sapkota D, Hao N, Ling L S, Du H F, Pi L, Zhang C J, Mandrus D G, Zhang Y H 2017 Phys. Rev. B 96 094439
[105] Kaul S N 1985 J. Magn. Magn. Mater. 3 5
计量
- 文章访问数: 7746
- PDF下载量: 475
- 被引次数: 0