搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹斯格明子径向阶数的可编程调控

李文宇 马慧芳 张会云 杨志鹏 周瑞丹 柯琳 张玉萍

引用本文:
Citation:

太赫兹斯格明子径向阶数的可编程调控

李文宇, 马慧芳, 张会云, 杨志鹏, 周瑞丹, 柯琳, 张玉萍

Programmable control of the radial order of terahertz skyrmions

LI Wenyu, Ma Huifang, ZHANG Huiyun, YANG Zhipeng, ZHOU Ruidan, Hestia Lin Ke, ZHANG Yuping
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 具有复杂角向和径向空间偏振纹理的斯托克斯矢量斯格明子被视为拓展光通信信息维度与容量的理想载体。然而,在太赫兹(THz)频段,其可控生成与稳定传输仍缺乏高效方案。本文提出一种多层超表面结构,借助微电机(MEMS)驱动调节相邻层之间的相对旋转角度,实现不同径向阶数斯格明子的生成,例如双层超表面可以产生三种不同径向阶数的斯格明子,显著突破了传统依赖相变材料的局限性。同时,本文提出一种基于扭转可调双层莫尔超表面设计,通过旋转角度实现对斯格明子径向阶数的连续动态调控。几何相位与动态相位的协同设计不仅锁定了拓扑不变量,还确保了光束在自由空间中的远程传播稳定性。进一步地,本文验证了多层结构可在无需外部环境调控的前提下灵活生成多类斯格明子拓扑光场,尤其在不同斯格明子数与径向缠绕数之间展现出良好的正交性,为实现多维度光场调控及远距离THz光通信系统提供了高度集成、高自由度的技术路径。
    Optical Stokes vector skyrmions, as novel fully Poincaré spherical vector beams, hold broad application prospects in optical communication, optical computing, multiplexing, and super-resolution imaging. However, existing research primarily focuses on the controllable generation of single optical skyrmions, with limited exploration of continuous modulation of different skyrmion configurations and insufficient investigation into generation in the terahertz frequency band. This paper proposes a multilayer metasurface that generates higher-order topological configurations of Stokes vector skyrmions through rotation. For instance, a two-layer structure enables rotational control of two skyrmion types, while a three-layer design achieves control over four skyrmion types. A twist-tunable double-layer Moiré metasurface design is simultaneously developed, where the two metasurface layers are designed with complementary Moiré phases to achieve continuous modulation of the radial skyrmion order. By synergistically modulating the geometric and dynamic phases of the metasurface, the topological invariance of free-space propagating skyrmions is preserved while maintaining beam intensity. The paper presents detailed theoretical analysis and numerical results, validated through full-wave simulation studies. This multilayer metasurface design enables dynamic control of Stokes vector and skyrmion configurations solely by adjusting the relative rotation angles between layers, eliminating the need to alter incident light or external conditions. This approach breaks through the limitations of traditional phase modulation methods reliant on phase-change materials. Furthermore, the dual-layer Moiré metasurface design significantly enhances device integration, offering a highly integrated and flexible technical pathway for realizing multidimensional light field manipulation and long-distance terahertz optical communication systems.
  • [1]

    Zambrini R, Barnett S M 2007 Opt. Express 15 15214

    [2]

    Forbes A, de Oliveira M, Dennis M R 2021 Nat. Photonics 15 253

    [3]

    Rubinsztein-Dunlop H, Forbes A, Berry M V, Dennis M R, Andrews D L, Mansuripur M, Denz C, Alpmann C, Banzer P, Bauer T, Karimi E, Marrucci L, Padgett M, Ritsch-Marte M, Litchinitser N M, Bigelow N P, Rosales-Guzmán C, Belmonte A, Torres J P, Neely T W, Baker M, Gordon R, Stilgoe A B, Romero J, White A G, Fickler R, Willner A E, Xie G, McMorran B, Weiner A M 2017 J.Opt 19 013001

    [4]

    Marrucci L, Karimi E, Slussarenko S, Piccirillo B, Santamato E, Nagali E, Sciarrino F 2011 J.Opt 13 064001

    [5]

    Rosales-Guzmán C, Rodríguez-Fajardo V 2024 Appl. Phys. Lett. 125

    [6]

    Li Y X, Zhang H Y, Cheng J X, Wang J C, Zhang M, Jiang Q Y, Liu M, Zhang Y P 2026 Acta. Phys. Sin 75 (in Chinese)[李禹希, 张会云, 陈炯煦,王嘉诚,张敏,蒋庆友,刘蒙,张玉萍 2026 物理学报 75]

    [7]

    Jia Y C, Zhang F R, Zhang J F, Kong L J, Zhang X D 2024 Acta. Phys. Sin 73 (in Chinese) [贾谊成, 张福荣, 张景风,孔令军,张向东2024 物理学报 73]

    [8]

    Shen Y J, Zhang Q, Shi P, Du L P, Yuan X C, Zayats A V 2023 Nat. Photonics 18 15

    [9]

    Zhou Z K, Wang S C, Li X P 2024 Acta. Opt. Sin 44 (in Chinese) [周志凯, 王思聪, 李向平2024 光学学报 44]

    [10]

    Tokura Y, Kanazawa N 2021 Chem. Rev. 121 2857

    [11]

    Wang C H, Wang J M, Huang C, Zhang D, Liu S, Liu Y W 2025 Opt. Express 33 3068

    [12]

    Tsesses S, Ostrovsky E, Cohen K, Gjonaj B, Lindner N H, Bartal G 2018 Science 361 993

    [13]

    Bai C Y, Chen J, Zhang Y X, Zhang D W, Zhan Q W 2020 Opt. Express 28 10320

    [14]

    Shen Z, Lu S, Xiong X 2024 Opt. Express 32 48289

    [15]

    Davis T J, Janoschka D, Dreher P, Frank B, Meyer Zu Heringdorf F J, Giessen H 2020 Science 368 eaba6415

    [16]

    Lei X R, Zhan Q W 2023 ACS Photonics 10 3551

    [17]

    Teng H A, Zhong J Z, Lei X R, Zhan Q W 2025 Commun. Phys-UK 8

    [18]

    Wang S C, Zhou Z K, Zheng Z C, Sun J L, Cao H K, Song S C, Deng Z L, Qin F, Cao Y Y, Li X P 2024 Phys. Rev. Lett 133 073802

    [19]

    Teng H A, Zhong J Z, Chen J, Lei X R, Zhan Q W 2023 Photonics. Res 11

    [20]

    Singh K, Ornelas P, Dudley A, Forbes A 2023 Opt. Express 31 15289

    [21]

    Allam S R, Yoneda Y, Omatsu T 2025 arXiv preprint arXiv:.10760

    [22]

    Srinivasa Rao A 2024 J. Opt. Soc. Am. A 41 1059

    [23]

    Li T Y, Liu M J, Chen C, Li X Y, Hou J H, Yang X, Wang S M, Zhu S N 2024 J. Optics-UK 26

    [24]

    Lin W B, Ota Y, Arakawa Y, Iwamoto S 2024 Optica 11

    [25]

    Rao L X, Wang J J, Wang X H, Wu S B, Zhao X Q, Liu W Z, Xie R S, Shen Y J, Shi L, Zi J 2025 Phys. Rev. Lett 135 026203

    [26]

    Mata-Cervera N, Sharma D K, Shen Y, Paniagua-Dominguez R, Porras M A 2025 Phys. Rev. Lett 135 033805

    [27]

    Gao S J, Speirits F C, Castellucci F, Franke-Arnold S, Barnett S M, Götte J B 2020 Phys. Rev. A 102

    [28]

    Ye Z, Barnett S M, Franke-Arnold S, Götte J B, McWilliam A, Speirits F C, Cisowski C M 2024 P. Roy. Soc. A-Math. Phy 480

    [29]

    Mata-Cervera N, Xie Z Y, Li C, Yu H Y, Ren H R, Shen Y J, Maier S A 2025 Nanophotonics 14 4069

    [30]

    Wang A A, Ma Y F, Zhang Y Q, Zhao Z M, Cai Y X, Qiu X K, Dong B W, He C 2024 arXiv preprint arXiv:.16311

    [31]

    Chen W T, Khorasaninejad M, Zhu A Y, Oh J, Devlin R C, Zaidi A, Capasso F 2017 Light-Sci. Appl 6 e16259

    [32]

    Devlin R C, Ambrosio A, Rubin N A, Mueller J P B, Capasso F 2017 Science 358 896

    [33]

    He T T, Meng Y, Wang L L, Zhong H K, Mata-Cervera N, Li D, Yan P, Liu Q, Shen Y J, Xiao Q R 2024 Nat. Commun 15 10141

    [34]

    Hakobyan V, Shen Y, Brasselet E 2024 Phys. Rev. Appl 22

    [35]

    Hakobyan V, Brasselet E 2025 Phys. Rev. Lett 134 083802

    [36]

    Cao T, Wang R Z, Simpson R E, Li G X 2020 Prog. Quant. Electron 74

    [37]

    Jepsen P U, Fischer B M, Thoman A, Helm H, Suh J Y, Lopez R, Haglund R F 2006 Phys. Rev. B 74 205103

    [38]

    Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraji-Dana M, Faraon A 2018 Nat. Commun 9 812

    [39]

    Bernet S 2021 J. Opt. Soc. Am. A 38 1521

    [40]

    Pander A, Kagami H, Kitayama D, Hamada H, Takahashi H 2025 Optica 12 1327

    [41]

    Dai J M, Zhang J Q, Zhang W L, Grischkowsky D 2004 J. Opt. Soc. Am. B 21

    [42]

    Fu Y, Chen Z H, Tang Z L, Ji Y H 2021 Appl. Optics 60 8472

  • [1] 蒋铭阳, 李九生. 弧度与旋转共同诱导相位调控太赫兹超表面. 物理学报, doi: 10.7498/aps.74.20241465
    [2] 魏涛, 张玉洁, 葛宏义, 蒋玉英, 吴旭阳, 孙振雨, 季晓迪, 补雨薇, 贾柯柯. 复合相位调控的波束转向可控反射型超表面. 物理学报, doi: 10.7498/aps.73.20240764
    [3] 黄若彤, 李九生. 太赫兹多波束调控反射编码超表面. 物理学报, doi: 10.7498/aps.72.20221962
    [4] 朱明杰, 赵微, 王治海. 巨腔系统中的光子屏蔽. 物理学报, doi: 10.7498/aps.72.20230049
    [5] 李泽宇, 姜去寒, 马腾洲, 袁英豪, 陈麟. 基于太赫兹石墨烯等离激元的多参数相位可调谐结构及其应用. 物理学报, doi: 10.7498/aps.70.20210445
    [6] 朱纪霖, 高东宝, 曾新吾. 基于相位变换声镊的单个微粒平面移动操控. 物理学报, doi: 10.7498/aps.70.20210981
    [7] 严巍, 王纪永, 曲俞睿, 李强, 仇旻. 基于相变材料超表面的光学调控. 物理学报, doi: 10.7498/aps.69.20200453
    [8] 王力, 刘静思, 李吉, 周晓林, 陈向荣, 刘超飞, 刘伍明. 旋量玻色-爱因斯坦凝聚体拓扑性质的研究进展. 物理学报, doi: 10.7498/aps.69.20191648
    [9] 李鑫, 吴立祥, 杨元杰. 矩形纳米狭缝超表面结构的近场增强聚焦调控. 物理学报, doi: 10.7498/aps.68.20190728
    [10] 徐桂舟, 徐展, 丁贝, 侯志鹏, 王文洪, 徐锋. 磁畴壁手性和磁斯格明子的拓扑性表征及其调控. 物理学报, doi: 10.7498/aps.67.20180513
    [11] 孟康康, 赵旭鹏, 苗君, 徐晓光, 赵建华, 姜勇. 铁磁/非磁金属异质结中的拓扑霍尔效应. 物理学报, doi: 10.7498/aps.67.20180369
    [12] 黄灿, 李小影, 朱岩, 潘燕飞, 樊济宇, 施大宁, 马春兰. 第一性原理计算Co/h-BN界面上的微弱Dzyaloshinsky-Moriya相互作用. 物理学报, doi: 10.7498/aps.67.20180337
    [13] 张蕾. 斯格明子相关的螺旋磁有序体系的临界行为. 物理学报, doi: 10.7498/aps.67.20180137
    [14] 梁雪, 赵莉, 邱雷, 李双, 丁丽红, 丰友华, 张溪超, 周艳, 赵国平. 磁性斯格明子的赛道存储. 物理学报, doi: 10.7498/aps.67.20180764
    [15] 赵巍胜, 黄阳棋, 张学莹, 康旺, 雷娜, 张有光. 斯格明子电子学的研究进展. 物理学报, doi: 10.7498/aps.67.20180554
    [16] 夏静, 韩宗益, 宋怡凡, 江文婧, 林柳蓉, 张溪超, 刘小晰, 周艳. 磁斯格明子器件及其应用进展. 物理学报, doi: 10.7498/aps.67.20180894
    [17] 李小影, 黄灿, 朱岩, 李晋斌, 樊济宇, 潘燕飞, 施大宁, 马春兰. -(Zn,Cr)S(111)表面上的Dzyaloshinsky-Moriya作用:第一性原理计算. 物理学报, doi: 10.7498/aps.67.20180342
    [18] 轩胜杰, 柳艳. 周期性应变调控斯格明子在纳米条带中的运动. 物理学报, doi: 10.7498/aps.67.20180031
    [19] 董博闻, 张静言, 彭丽聪, 何敏, 张颖, 赵云驰, 王超, 孙阳, 蔡建旺, 王文洪, 魏红祥, 沈保根, 姜勇, 王守国. 磁性斯格明子的多场调控研究. 物理学报, doi: 10.7498/aps.67.20180931
    [20] 卢晓波, 张广宇. 石墨烯莫尔超晶格. 物理学报, doi: 10.7498/aps.64.077305
计量
  • 文章访问数:  17
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-13

/

返回文章
返回