搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种可控的Ioffe型冷分子表面微电阱

许雪艳 侯顺永 印建平

引用本文:
Citation:

一种可控的Ioffe型冷分子表面微电阱

许雪艳, 侯顺永, 印建平

Chip-based controllable Ioffe-typed electrostatic mirotrap for cold molecules

Xu Xue-Yan, Hou Shun-Yong, Yin Jian-Ping
PDF
导出引用
  • 囚禁于阱中的粒子(原子或分子)可获得更长的相互作用时间,因而在精密测量中可获得更高的分辨率.阱中的粒子与外界隔离,从而可以被冷却到更低的温度.因此原子(或分子)阱已广泛应用到许多研究领域.然而中心电场强度为零的势阱会导致粒子发生非绝热跃迁,这是原子或分子损失的主要来源.该损失曾是制备原子玻色-爱因斯坦凝聚的最后一道障碍.本文提出了一种可控的Ioffe型表面微电阱,其电场强度处处不为零,可有效避免分子的非绝热损失.另外,通过调节电压等参数,势阱中心电场强度以及势阱中心距芯片表面的高度可以在较大范围内调节,例如在本文参数下,势阱中心电场强度可在0.155.5 kV/cm变化,势阱中心高度可在6.017.0 m变化.本文通过有限元软件计算了芯片表面微电阱的电场分布,并用Monte Carlo模拟验证了该方案的可行性.该表面微电阱不仅可用于分子芯片的集成,而且可用于表面量子简并气体的制备.为精密测量、量子计算、表面冷碰撞和冷化学等领域提供了一个平台.
    Trapping particles (atoms or molecules) allows long interaction time and therefore potentially high resolution in precision measurements. Moreover, the particles in the trap are thermally isolated from the outside world and can be cooled to very low temperatures. As a result, the atomic (or molecular) traps have been widely used in many research areas. However, the molecules in these traps exhibiting zero field in the trap center undergo nonadiabatic transitions, which is the major loss of particles. The loss of atoms in this type of trap seriously hinders the generation of the first BEC (Bose-Einstein condensates). In this paper, we propose a chip-based controllable Ioffe-type electrostatic mirotrap, in which nonadabatic loss can be avoided due to the non-zero electric field. The mirotrap is composed of a pair of L-typed gold wires, which is 1 m in height and deposited on a glass substrate. The non-zero potential well originated in the microsize electrodes offers a steep gradient enable to trap low-field-seeking state polar molecules. The electric field strength in the trap center can be changed in a wide range by adjusting the applied voltage or/and the widths of the electrodes. For instance, under the conditions in the paper, the electric field strength in the trap center can be changed from 0.15 to 5.5 kV/cm. The height of the potential well is about 10 m above the chip and can also be tuned in a large range by adjusting the parameters of the electrodes. Under the conditions in the paper, the height of the potential well can be adjusted from 6.0 to 17.0 m. The electric fields of the microtrap near the surface of the chip are calculated by using a finite element software. Monte-Carlo simulations of the loading and the trapping processes are also carried out in order to justify the feasibility of our scheme. Taking ND3 molecules for example, the loading efficiency of molecules as a function of longitudinal velocity of molecular packet is studied. Our proposed surface microtrap can be used not only for integrating the molecular chips but also for producing the quantum degenerate gas near the chip surface. It offers a platform for many research fields such as precision measurements, quantum computing, surface cold collisions and cold chemistry.
      通信作者: 侯顺永, syhou@lps.ecnu.edu.cn
    • 基金项目: 安徽省高校优秀青年人才支持计划重点项目(批准号:gxyqZD2016286)和国家自然科学基金(批准号:91536218,11034002,11274114,11504112)资助的课题.
      Corresponding author: Hou Shun-Yong, syhou@lps.ecnu.edu.cn
    • Funds: Project supported by the Key Foundation for Outstanding Young Scientists of Higher Education Institutions in Anhui Province, China (Grant No. gxyqZD2016286) and the National Natural Science Foundation of China (Grant Nos. 91536218, 11034002, 11274114, 11504112).
    [1]

    Chu S 1998 Rev. Mod. Phys. 70 685

    [2]

    Cohen-Tannoudji C N 1998 Rev. Mod. Phys. 70 707

    [3]

    Phillips W D 1998 Rev. Mod. Phys. 70 721

    [4]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198

    [5]

    Bradley C C, Sackett C A, Tollett J J, Hulet R G 1995 Phys. Rev. Lett. 75 1687

    [6]

    Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969

    [7]

    Weinstein J D, de Carvalho R, Guillet T, Friedrich B, Doyle J M 1998 Nature 395 148

    [8]

    Stuhl B K, Hummon M T, Yeo M, Qumner G, Bohn J L, Ye J 2012 Nature 492 396

    [9]

    Bethlem H L, Berden G, Meijer G 1999 Phys. Rev. Lett. 83 1558

    [10]

    Shuman E S, Barry J F, Glenn D R, DeMille D 2009 Phys. Rev. Lett. 103 223001

    [11]

    Shuman E S, Barry J F, DeMille D 2010 Nature 467 820

    [12]

    Zeppenfeld M, Englert B G U, Glckner R, Prehn A, Mielenz M, Sommer C, van Buuren L D, Motsch M, Rempe G 2012 Nature 491 570

    [13]

    Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001

    [14]

    Zhelyazkova V, Cournol A, Wall T E, Matsushima A, Hudson J J, Hinds E A, Tarbutt M R, Sauer B E 2014 Phys. Rev. A 89 053416

    [15]

    Barry J F, McCarron D J, Norrgard E B, Steinecker M H, DeMille D 2014 Nature 512 286

    [16]

    Kozyryev I, Baum L, Matsuda K, Hemmerling B, Doyle J M 2016 J. Phys. B: At. Mol. Opt. Phys. 49 134002

    [17]

    Bethlem H L, Berden G, Crompvoets F M H, Jongma R T, van Roij A J A, Meijer G 2000 Nature 406 491

    [18]

    van Veldhoven J, Bethlem H L, Meijier G 2005 Phys. Rev. Lett. 94 083001

    [19]

    van Veldhoven J, Bethlem H L, Schnell M, Meijer G 2006 Phys. Rev. A 73 063408

    [20]

    Kleinert J, Haimberger C, Zabawa P J, Bigelow N P 2007 Phys. Rev. Lett. 99 143002

    [21]

    Meek S A, Bethlem H L, Conrad H, Meijer G 2008 Phys. Rev. Lett. 100 153003

    [22]

    Meek S A, Conrad H, Meijer G 2009 Science 324 1699

    [23]

    Englert B G U, Mielenz M, Sommer C, Bayerl J, Motsch M, Pinkse P W H, Rempe G, Zeppenfeld M 2011 Phys. Rev. Lett. 107 263003

    [24]

    Prehn A, Ibrgger M, Glckner R, Rempe G, Zeppenfeld M 2016 Phys. Rev. Lett. 116 063005

    [25]

    Li S Q, Xu L, Xia Y, Wang H L, Yin J P 2014 Chin. Phys. B 23 123701

    [26]

    Wang Q, Li S Q, Hou S Y, Wang H L, Yin J P 2014 Chin. Phys. B 23 013701

    [27]

    Ma H, Zhou P, Liao B, Yin J P 2007 Chin. Phys. Lett. 24 1228

    [28]

    Ma H, Xu X Y, Yin J P 2011 Acta Opt. Sin. 31 16 (in Chinese) [马慧, 许雪艳, 印建平 2011 光学学报 31 16]

    [29]

    Hou S Y, Li S Q, Deng L Z, Yin J P 2013 J. Phys. B: At. Mol. Opt. Phys. 46 045301

    [30]

    Bethlem H L, Crompvoets F M H, Jongma R T, van de Meerakker S Y T, Meijer G 2002 Phys. Rev. A 65 053416

    [31]

    Buhmann S Y, Tarbutt M R, Scheel S, Hinds E A 2008 Phys. Rev. A 78 052901

    [32]

    Scoles G, Bassi D, Buck U, Laine D, Braun C 1986 Atomic and Molecular Beam Methods (New York: Oxford University Press) p27

    [33]

    Gupta M, Herschbach D 1999 J. Phys. Chem. A 103 10670

    [34]

    DeMille D 2002 Phys. Rev. Lett. 88 067901

    [35]

    Yelin S F, Kirby K, Ct R 2006 Phys. Rev. A 74 050301

    [36]

    Andr A, Demille D, Doyle J M, Lukin M D, Maxwell S E, Rabl P, Schoelkopf R J, Zoller P 2006 Nat. Phys. 2 636

    [37]

    Kuznetsova E, Ct R, Kirby K, Yelin S F 2008 Phys. Rev. A 78 012313

    [38]

    Rabl P, DeMille D, Doyle J M, Lukin M D, Schoelkopf R J, Zoller P 2006 Phys. Rev. Lett. 97 033003

  • [1]

    Chu S 1998 Rev. Mod. Phys. 70 685

    [2]

    Cohen-Tannoudji C N 1998 Rev. Mod. Phys. 70 707

    [3]

    Phillips W D 1998 Rev. Mod. Phys. 70 721

    [4]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198

    [5]

    Bradley C C, Sackett C A, Tollett J J, Hulet R G 1995 Phys. Rev. Lett. 75 1687

    [6]

    Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969

    [7]

    Weinstein J D, de Carvalho R, Guillet T, Friedrich B, Doyle J M 1998 Nature 395 148

    [8]

    Stuhl B K, Hummon M T, Yeo M, Qumner G, Bohn J L, Ye J 2012 Nature 492 396

    [9]

    Bethlem H L, Berden G, Meijer G 1999 Phys. Rev. Lett. 83 1558

    [10]

    Shuman E S, Barry J F, Glenn D R, DeMille D 2009 Phys. Rev. Lett. 103 223001

    [11]

    Shuman E S, Barry J F, DeMille D 2010 Nature 467 820

    [12]

    Zeppenfeld M, Englert B G U, Glckner R, Prehn A, Mielenz M, Sommer C, van Buuren L D, Motsch M, Rempe G 2012 Nature 491 570

    [13]

    Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001

    [14]

    Zhelyazkova V, Cournol A, Wall T E, Matsushima A, Hudson J J, Hinds E A, Tarbutt M R, Sauer B E 2014 Phys. Rev. A 89 053416

    [15]

    Barry J F, McCarron D J, Norrgard E B, Steinecker M H, DeMille D 2014 Nature 512 286

    [16]

    Kozyryev I, Baum L, Matsuda K, Hemmerling B, Doyle J M 2016 J. Phys. B: At. Mol. Opt. Phys. 49 134002

    [17]

    Bethlem H L, Berden G, Crompvoets F M H, Jongma R T, van Roij A J A, Meijer G 2000 Nature 406 491

    [18]

    van Veldhoven J, Bethlem H L, Meijier G 2005 Phys. Rev. Lett. 94 083001

    [19]

    van Veldhoven J, Bethlem H L, Schnell M, Meijer G 2006 Phys. Rev. A 73 063408

    [20]

    Kleinert J, Haimberger C, Zabawa P J, Bigelow N P 2007 Phys. Rev. Lett. 99 143002

    [21]

    Meek S A, Bethlem H L, Conrad H, Meijer G 2008 Phys. Rev. Lett. 100 153003

    [22]

    Meek S A, Conrad H, Meijer G 2009 Science 324 1699

    [23]

    Englert B G U, Mielenz M, Sommer C, Bayerl J, Motsch M, Pinkse P W H, Rempe G, Zeppenfeld M 2011 Phys. Rev. Lett. 107 263003

    [24]

    Prehn A, Ibrgger M, Glckner R, Rempe G, Zeppenfeld M 2016 Phys. Rev. Lett. 116 063005

    [25]

    Li S Q, Xu L, Xia Y, Wang H L, Yin J P 2014 Chin. Phys. B 23 123701

    [26]

    Wang Q, Li S Q, Hou S Y, Wang H L, Yin J P 2014 Chin. Phys. B 23 013701

    [27]

    Ma H, Zhou P, Liao B, Yin J P 2007 Chin. Phys. Lett. 24 1228

    [28]

    Ma H, Xu X Y, Yin J P 2011 Acta Opt. Sin. 31 16 (in Chinese) [马慧, 许雪艳, 印建平 2011 光学学报 31 16]

    [29]

    Hou S Y, Li S Q, Deng L Z, Yin J P 2013 J. Phys. B: At. Mol. Opt. Phys. 46 045301

    [30]

    Bethlem H L, Crompvoets F M H, Jongma R T, van de Meerakker S Y T, Meijer G 2002 Phys. Rev. A 65 053416

    [31]

    Buhmann S Y, Tarbutt M R, Scheel S, Hinds E A 2008 Phys. Rev. A 78 052901

    [32]

    Scoles G, Bassi D, Buck U, Laine D, Braun C 1986 Atomic and Molecular Beam Methods (New York: Oxford University Press) p27

    [33]

    Gupta M, Herschbach D 1999 J. Phys. Chem. A 103 10670

    [34]

    DeMille D 2002 Phys. Rev. Lett. 88 067901

    [35]

    Yelin S F, Kirby K, Ct R 2006 Phys. Rev. A 74 050301

    [36]

    Andr A, Demille D, Doyle J M, Lukin M D, Maxwell S E, Rabl P, Schoelkopf R J, Zoller P 2006 Nat. Phys. 2 636

    [37]

    Kuznetsova E, Ct R, Kirby K, Yelin S F 2008 Phys. Rev. A 78 012313

    [38]

    Rabl P, DeMille D, Doyle J M, Lukin M D, Schoelkopf R J, Zoller P 2006 Phys. Rev. Lett. 97 033003

  • [1] 焦月春, 白景旭, 宋蓉, 韩小萱, 赵建明. 超冷(36D5/2+6S1/2)里德伯分子的制备及其电偶极矩的测量. 物理学报, 2023, 72(3): 033202. doi: 10.7498/aps.72.20221865
    [2] 王月洋, 尹俊豪, 严康, 林钦宁, 庞仁君, 王泽森, 杨涛, 印建平. 基于多能级速率方程的CaH分子三维磁光囚禁模型. 物理学报, 2022, 71(16): 163701. doi: 10.7498/aps.71.20220304
    [3] 白素英, 白景旭, 韩小萱, 焦月春, 赵建明. 超冷长程Rydberg-基态分子. 物理学报, 2021, 70(12): 123201. doi: 10.7498/aps.70.20202229
    [4] 尹俊豪, 杨涛, 印建平. 基于${{\bf{A}}}^{{\boldsymbol{2}}}{{{\boldsymbol{\Pi}} }}_{{\boldsymbol{1/2}}}{\boldsymbol{\leftarrow }}{{\bf{X}}}^{{\boldsymbol{2}}}{{{\boldsymbol{\Sigma }}}}_{{\boldsymbol{1/2}}}$跃迁的CaH分子激光冷却光谱理论研究. 物理学报, 2021, 70(16): 163302. doi: 10.7498/aps.70.20210522
    [5] 鹿博, 王大军. 超冷极性分子. 物理学报, 2019, 68(4): 043301. doi: 10.7498/aps.68.20182274
    [6] 陈涛, 颜波. 极性分子的激光冷却及囚禁技术. 物理学报, 2019, 68(4): 043701. doi: 10.7498/aps.68.20181655
    [7] 秦燕, 栗生长. 基于方波脉冲外场的超冷原子-分子绝热转化. 物理学报, 2018, 67(20): 203701. doi: 10.7498/aps.67.20180908
    [8] 李晓云, 孙博文, 许正倩, 陈静, 尹亚玲, 印建平. 基于调制光晶格的中性分子束光学Stark减速与囚禁的理论研究. 物理学报, 2018, 67(20): 203702. doi: 10.7498/aps.67.20181348
    [9] 刘建平, 侯顺永, 魏斌, 印建平. 亚声速NH3分子束静电Stark减速的理论研究. 物理学报, 2015, 64(17): 173701. doi: 10.7498/aps.64.173701
    [10] 赵延霆, 元晋鹏, 姬中华, 李中豪, 孟腾飞, 刘涛, 肖连团, 贾锁堂. 光缔合制备超冷铯分子的温度测量. 物理学报, 2014, 63(19): 193701. doi: 10.7498/aps.63.193701
    [11] 陆俊发, 周琦, 潘小青, 印建平. 可操控二种冷原子或冷分子样品的光学双阱新方案及其实验研究. 物理学报, 2013, 62(23): 233701. doi: 10.7498/aps.62.233701
    [12] 元晋鹏, 姬中华, 杨艳, 张洪山, 赵延霆, 马杰, 汪丽蓉, 肖连团, 贾锁堂. 飞行时间质谱探测磁光阱中超冷分子离子的实验研究. 物理学报, 2012, 61(18): 183301. doi: 10.7498/aps.61.183301
    [13] 陆俊发, 周琦, 纪宪明, 印建平. 实现冷原子、冷分子光学囚禁的组合三光学势阱方案. 物理学报, 2011, 60(6): 063701. doi: 10.7498/aps.60.063701
    [14] 张一驰, 武寄洲, 马杰, 赵延霆, 汪丽蓉, 肖连团, 贾锁堂. 最优化参数控制提高超冷铯分子振转光谱的信噪比. 物理学报, 2010, 59(8): 5418-5423. doi: 10.7498/aps.59.5418
    [15] 许雪艳, 陈海波, 印建平. 一种实现冷分子囚禁的可控制静电双阱方案. 物理学报, 2009, 58(3): 1563-1568. doi: 10.7498/aps.58.1563
    [16] 沐仁旺, 纪宪明, 印建平. 一种实现冷原子(或冷分子)囚禁的可控制纵向光学双阱. 物理学报, 2006, 55(11): 5795-5802. doi: 10.7498/aps.55.5795
    [17] 纪宪明, 陆俊法, 沐仁旺, 印建平. 采用Damman光栅实现冷原子或冷分子囚禁的光阱阵列. 物理学报, 2006, 55(7): 3396-3402. doi: 10.7498/aps.55.3396
    [18] 陆俊发, 纪宪明, 印建平. 实现冷原子或冷分子囚禁的可控制光学四阱. 物理学报, 2006, 55(4): 1740-1750. doi: 10.7498/aps.55.1740
    [19] 沐仁旺, 李雅丽, 纪宪明, 印建平. 实现冷原子(冷分子)囚禁的可控制光学双阱的产生及其实验研究. 物理学报, 2006, 55(12): 6333-6341. doi: 10.7498/aps.55.6333
    [20] 纪宪明, 印建平. 冷原子或冷分子囚禁的可控制光学双阱. 物理学报, 2004, 53(12): 4163-4172. doi: 10.7498/aps.53.4163
计量
  • 文章访问数:  4626
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-27
  • 修回日期:  2018-03-16
  • 刊出日期:  2018-06-05

/

返回文章
返回