-
囚禁于阱中的粒子(原子或分子)可获得更长的相互作用时间,因而在精密测量中可获得更高的分辨率.阱中的粒子与外界隔离,从而可以被冷却到更低的温度.因此原子(或分子)阱已广泛应用到许多研究领域.然而中心电场强度为零的势阱会导致粒子发生非绝热跃迁,这是原子或分子损失的主要来源.该损失曾是制备原子玻色-爱因斯坦凝聚的最后一道障碍.本文提出了一种可控的Ioffe型表面微电阱,其电场强度处处不为零,可有效避免分子的非绝热损失.另外,通过调节电压等参数,势阱中心电场强度以及势阱中心距芯片表面的高度可以在较大范围内调节,例如在本文参数下,势阱中心电场强度可在0.155.5 kV/cm变化,势阱中心高度可在6.017.0 m变化.本文通过有限元软件计算了芯片表面微电阱的电场分布,并用Monte Carlo模拟验证了该方案的可行性.该表面微电阱不仅可用于分子芯片的集成,而且可用于表面量子简并气体的制备.为精密测量、量子计算、表面冷碰撞和冷化学等领域提供了一个平台.Trapping particles (atoms or molecules) allows long interaction time and therefore potentially high resolution in precision measurements. Moreover, the particles in the trap are thermally isolated from the outside world and can be cooled to very low temperatures. As a result, the atomic (or molecular) traps have been widely used in many research areas. However, the molecules in these traps exhibiting zero field in the trap center undergo nonadiabatic transitions, which is the major loss of particles. The loss of atoms in this type of trap seriously hinders the generation of the first BEC (Bose-Einstein condensates). In this paper, we propose a chip-based controllable Ioffe-type electrostatic mirotrap, in which nonadabatic loss can be avoided due to the non-zero electric field. The mirotrap is composed of a pair of L-typed gold wires, which is 1 m in height and deposited on a glass substrate. The non-zero potential well originated in the microsize electrodes offers a steep gradient enable to trap low-field-seeking state polar molecules. The electric field strength in the trap center can be changed in a wide range by adjusting the applied voltage or/and the widths of the electrodes. For instance, under the conditions in the paper, the electric field strength in the trap center can be changed from 0.15 to 5.5 kV/cm. The height of the potential well is about 10 m above the chip and can also be tuned in a large range by adjusting the parameters of the electrodes. Under the conditions in the paper, the height of the potential well can be adjusted from 6.0 to 17.0 m. The electric fields of the microtrap near the surface of the chip are calculated by using a finite element software. Monte-Carlo simulations of the loading and the trapping processes are also carried out in order to justify the feasibility of our scheme. Taking ND3 molecules for example, the loading efficiency of molecules as a function of longitudinal velocity of molecular packet is studied. Our proposed surface microtrap can be used not only for integrating the molecular chips but also for producing the quantum degenerate gas near the chip surface. It offers a platform for many research fields such as precision measurements, quantum computing, surface cold collisions and cold chemistry.
-
Keywords:
- cold molecules /
- molecular chip /
- microtrap
[1] Chu S 1998 Rev. Mod. Phys. 70 685
[2] Cohen-Tannoudji C N 1998 Rev. Mod. Phys. 70 707
[3] Phillips W D 1998 Rev. Mod. Phys. 70 721
[4] Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198
[5] Bradley C C, Sackett C A, Tollett J J, Hulet R G 1995 Phys. Rev. Lett. 75 1687
[6] Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969
[7] Weinstein J D, de Carvalho R, Guillet T, Friedrich B, Doyle J M 1998 Nature 395 148
[8] Stuhl B K, Hummon M T, Yeo M, Qumner G, Bohn J L, Ye J 2012 Nature 492 396
[9] Bethlem H L, Berden G, Meijer G 1999 Phys. Rev. Lett. 83 1558
[10] Shuman E S, Barry J F, Glenn D R, DeMille D 2009 Phys. Rev. Lett. 103 223001
[11] Shuman E S, Barry J F, DeMille D 2010 Nature 467 820
[12] Zeppenfeld M, Englert B G U, Glckner R, Prehn A, Mielenz M, Sommer C, van Buuren L D, Motsch M, Rempe G 2012 Nature 491 570
[13] Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001
[14] Zhelyazkova V, Cournol A, Wall T E, Matsushima A, Hudson J J, Hinds E A, Tarbutt M R, Sauer B E 2014 Phys. Rev. A 89 053416
[15] Barry J F, McCarron D J, Norrgard E B, Steinecker M H, DeMille D 2014 Nature 512 286
[16] Kozyryev I, Baum L, Matsuda K, Hemmerling B, Doyle J M 2016 J. Phys. B: At. Mol. Opt. Phys. 49 134002
[17] Bethlem H L, Berden G, Crompvoets F M H, Jongma R T, van Roij A J A, Meijer G 2000 Nature 406 491
[18] van Veldhoven J, Bethlem H L, Meijier G 2005 Phys. Rev. Lett. 94 083001
[19] van Veldhoven J, Bethlem H L, Schnell M, Meijer G 2006 Phys. Rev. A 73 063408
[20] Kleinert J, Haimberger C, Zabawa P J, Bigelow N P 2007 Phys. Rev. Lett. 99 143002
[21] Meek S A, Bethlem H L, Conrad H, Meijer G 2008 Phys. Rev. Lett. 100 153003
[22] Meek S A, Conrad H, Meijer G 2009 Science 324 1699
[23] Englert B G U, Mielenz M, Sommer C, Bayerl J, Motsch M, Pinkse P W H, Rempe G, Zeppenfeld M 2011 Phys. Rev. Lett. 107 263003
[24] Prehn A, Ibrgger M, Glckner R, Rempe G, Zeppenfeld M 2016 Phys. Rev. Lett. 116 063005
[25] Li S Q, Xu L, Xia Y, Wang H L, Yin J P 2014 Chin. Phys. B 23 123701
[26] Wang Q, Li S Q, Hou S Y, Wang H L, Yin J P 2014 Chin. Phys. B 23 013701
[27] Ma H, Zhou P, Liao B, Yin J P 2007 Chin. Phys. Lett. 24 1228
[28] Ma H, Xu X Y, Yin J P 2011 Acta Opt. Sin. 31 16 (in Chinese) [马慧, 许雪艳, 印建平 2011 光学学报 31 16]
[29] Hou S Y, Li S Q, Deng L Z, Yin J P 2013 J. Phys. B: At. Mol. Opt. Phys. 46 045301
[30] Bethlem H L, Crompvoets F M H, Jongma R T, van de Meerakker S Y T, Meijer G 2002 Phys. Rev. A 65 053416
[31] Buhmann S Y, Tarbutt M R, Scheel S, Hinds E A 2008 Phys. Rev. A 78 052901
[32] Scoles G, Bassi D, Buck U, Laine D, Braun C 1986 Atomic and Molecular Beam Methods (New York: Oxford University Press) p27
[33] Gupta M, Herschbach D 1999 J. Phys. Chem. A 103 10670
[34] DeMille D 2002 Phys. Rev. Lett. 88 067901
[35] Yelin S F, Kirby K, Ct R 2006 Phys. Rev. A 74 050301
[36] Andr A, Demille D, Doyle J M, Lukin M D, Maxwell S E, Rabl P, Schoelkopf R J, Zoller P 2006 Nat. Phys. 2 636
[37] Kuznetsova E, Ct R, Kirby K, Yelin S F 2008 Phys. Rev. A 78 012313
[38] Rabl P, DeMille D, Doyle J M, Lukin M D, Schoelkopf R J, Zoller P 2006 Phys. Rev. Lett. 97 033003
-
[1] Chu S 1998 Rev. Mod. Phys. 70 685
[2] Cohen-Tannoudji C N 1998 Rev. Mod. Phys. 70 707
[3] Phillips W D 1998 Rev. Mod. Phys. 70 721
[4] Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198
[5] Bradley C C, Sackett C A, Tollett J J, Hulet R G 1995 Phys. Rev. Lett. 75 1687
[6] Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969
[7] Weinstein J D, de Carvalho R, Guillet T, Friedrich B, Doyle J M 1998 Nature 395 148
[8] Stuhl B K, Hummon M T, Yeo M, Qumner G, Bohn J L, Ye J 2012 Nature 492 396
[9] Bethlem H L, Berden G, Meijer G 1999 Phys. Rev. Lett. 83 1558
[10] Shuman E S, Barry J F, Glenn D R, DeMille D 2009 Phys. Rev. Lett. 103 223001
[11] Shuman E S, Barry J F, DeMille D 2010 Nature 467 820
[12] Zeppenfeld M, Englert B G U, Glckner R, Prehn A, Mielenz M, Sommer C, van Buuren L D, Motsch M, Rempe G 2012 Nature 491 570
[13] Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001
[14] Zhelyazkova V, Cournol A, Wall T E, Matsushima A, Hudson J J, Hinds E A, Tarbutt M R, Sauer B E 2014 Phys. Rev. A 89 053416
[15] Barry J F, McCarron D J, Norrgard E B, Steinecker M H, DeMille D 2014 Nature 512 286
[16] Kozyryev I, Baum L, Matsuda K, Hemmerling B, Doyle J M 2016 J. Phys. B: At. Mol. Opt. Phys. 49 134002
[17] Bethlem H L, Berden G, Crompvoets F M H, Jongma R T, van Roij A J A, Meijer G 2000 Nature 406 491
[18] van Veldhoven J, Bethlem H L, Meijier G 2005 Phys. Rev. Lett. 94 083001
[19] van Veldhoven J, Bethlem H L, Schnell M, Meijer G 2006 Phys. Rev. A 73 063408
[20] Kleinert J, Haimberger C, Zabawa P J, Bigelow N P 2007 Phys. Rev. Lett. 99 143002
[21] Meek S A, Bethlem H L, Conrad H, Meijer G 2008 Phys. Rev. Lett. 100 153003
[22] Meek S A, Conrad H, Meijer G 2009 Science 324 1699
[23] Englert B G U, Mielenz M, Sommer C, Bayerl J, Motsch M, Pinkse P W H, Rempe G, Zeppenfeld M 2011 Phys. Rev. Lett. 107 263003
[24] Prehn A, Ibrgger M, Glckner R, Rempe G, Zeppenfeld M 2016 Phys. Rev. Lett. 116 063005
[25] Li S Q, Xu L, Xia Y, Wang H L, Yin J P 2014 Chin. Phys. B 23 123701
[26] Wang Q, Li S Q, Hou S Y, Wang H L, Yin J P 2014 Chin. Phys. B 23 013701
[27] Ma H, Zhou P, Liao B, Yin J P 2007 Chin. Phys. Lett. 24 1228
[28] Ma H, Xu X Y, Yin J P 2011 Acta Opt. Sin. 31 16 (in Chinese) [马慧, 许雪艳, 印建平 2011 光学学报 31 16]
[29] Hou S Y, Li S Q, Deng L Z, Yin J P 2013 J. Phys. B: At. Mol. Opt. Phys. 46 045301
[30] Bethlem H L, Crompvoets F M H, Jongma R T, van de Meerakker S Y T, Meijer G 2002 Phys. Rev. A 65 053416
[31] Buhmann S Y, Tarbutt M R, Scheel S, Hinds E A 2008 Phys. Rev. A 78 052901
[32] Scoles G, Bassi D, Buck U, Laine D, Braun C 1986 Atomic and Molecular Beam Methods (New York: Oxford University Press) p27
[33] Gupta M, Herschbach D 1999 J. Phys. Chem. A 103 10670
[34] DeMille D 2002 Phys. Rev. Lett. 88 067901
[35] Yelin S F, Kirby K, Ct R 2006 Phys. Rev. A 74 050301
[36] Andr A, Demille D, Doyle J M, Lukin M D, Maxwell S E, Rabl P, Schoelkopf R J, Zoller P 2006 Nat. Phys. 2 636
[37] Kuznetsova E, Ct R, Kirby K, Yelin S F 2008 Phys. Rev. A 78 012313
[38] Rabl P, DeMille D, Doyle J M, Lukin M D, Schoelkopf R J, Zoller P 2006 Phys. Rev. Lett. 97 033003
计量
- 文章访问数: 5722
- PDF下载量: 90
- 被引次数: 0