搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氢化杂质和厚度效应对高斯势量子点中二能级体系量子跃迁的影响

白旭芳 赵玉伟 尹洪武 额尔敦朝鲁

引用本文:
Citation:

氢化杂质和厚度效应对高斯势量子点中二能级体系量子跃迁的影响

白旭芳, 赵玉伟, 尹洪武, 额尔敦朝鲁

Influence of Hydrogen-like impurity and thickness effect on quantum transition of a two-level system in an asymmetric Gaussian potential quantum dot

Bai Xu-Fang, Zhao Yu-Wei, Yin Hong-Wu, Eerdunchaolu
PDF
导出引用
  • 在计及氢化杂质和厚度效应下,分别选取抛物线型限定势阱和高斯函数型限定势阱描写盘型量子点中电子的横向限定势和纵向限定势,采用Lee-Low-Pines-Pekar变分法推导出量子点中电子的基态和第一激发态能量本征值和本征函数,以此为基础,构造了一个二能级结构,并基于二能级体系理论,讨论了电子在磁场作用下的量子跃迁.结果表明,高斯函数型限定势比抛物线型限定势更能精准反映量子点中真实的限定势;量子点的厚度对电子的跃迁概率的影响不凡;电声耦合强度、介电常数比、磁场的回旋频率、高斯函数型限定势阱的阱深和阱宽等对电子基态与第一激发态声子平均数、能量以及量子跃迁的影响显著.
    Considering hydrogen-like impurity and the thickness effect,the eigenvalues and eigenfunctions of the electron ground state and first exited state in a quantum dot (QD) are derived by using the Lee-Low-Pines-Pekar variational method with a parabolic confinement potential well (PCPW) and an asymmetric Gaussian functional confinement potential well (AGFCPW) serving as the transverse and longitudinal confinement potential,respectively.Based on the above two states,a two-level system is constructed.Then,the electron quantum transition affected by a magnetic field is discussed in terms of the two-level system theory.The numerical calculations indicate that the electron transition probability Q deceases with the range R0 of the PCPW decreasing.With R0 decreasing,the amplitude of the transition probability Q decreases greatly when R0 is small (R0 2.5rp),but the decrease becomes small when R0 is large (R0 2.5rp).The transition probability Q decreases with the dielectric constant ratio increasing.For different values of the well width L of the AGFCPW,the change forms of the transition probability Q with the well width L are different:the transition probability Q decreases monotonically with the decreasing of the well width L when L is large (L 1.3rp), which is similar to the trend of the transition probability Q changing with the range R0 of the PCPW,but the oscillation of the transition probability Q is small with the decreasing of the well width L when L is small (L 1.3rp).Whereas, both changes are consistent basically when the range of the confinement potential (the value of R0 or L) is large since the AGFCPW can be approximated by the PCPW when z/L ≪ 1.For the electronic state and its change in the QD with a confinement potential,in any case,the results are rough without regard to the influence arising from the thickness of the QD.This shows that the AGFCPW is more accurate than the PCPW in reflecting the real confinement potential. This conclusion is in accordance with the experimental results.In addition,the transition probability Q decreases with increasing V0.The amplitude of the transition probability Q decreasing with increasing the dielectric constant ratio is enlarged with reducing the coupling strength .This indicates that the phonon (the polarization of the medium) effect cannot be ignored when investigating the change of the electronic state in the QD.The transition probability Q periodically oscillates and goes up with increasing the cyclotron frequency c.The external magnetic field is a kind of inducement causing the quantum transition of electronic state.The transition probability Q periodically oscillates and goes up with increasing the cyclotron frequency c,and is affected dramatically by the coupling strength :with increasing the coupling strength ,the oscillation period of Q increases,but the oscillation amplitude decreases.In a word,the transition probability of the electron is influenced significantly by some physical quantities,such as the coupling strength ,the dielectric constant ratio ,the resonant frequency of the magnetic field c,the well depth V0, and the well width L of AGFCPW.
      通信作者: 额尔敦朝鲁, eerdunchaolu@163.com
    • 基金项目: 河北省自然科学基金(批准号:E2013407119)和内蒙古高等学校科学技术研究项目(批准号:NJZY14189)资助的课题.
      Corresponding author: Eerdunchaolu, eerdunchaolu@163.com
    • Funds: Project supported by the National Nature Science Foundation of Hebei Province, China (Grant No. E2013407119) and the Items of Institution of Higher Education Scientific Research of Inner Mongolia, China (Grant No. NJZY14189).
    [1]

    Dou X M, Ying Y U, Sun B Q, Jiang D S, Ni H Q, Niu Z C 2012 Chin. Phys. Lett. 29 104203

    [2]

    Wang H Y, Su D, Yang S, Dou X M, Zhu H J, Jiang D S, Ni H Q, Niu Z C, Zhao C L, Sun B Q 2015 Chin. Phys. Lett. 32 107804

    [3]

    Yang S, Dou X M, Yu Y, Ni H Q, Niu Z C, Jiang D S, Sun B Q 2015 Chin. Phys. Lett. 32 077804

    [4]

    Xue Y Z, Chen Z S, Ni H Q, Niu Z C, Jiang D S, Dou X M, Sun B Q 2017 Chin. Phys. B 26 084202

    [5]

    Li B X, Zheng J, Chi F 2012 Chin. Phys. Lett. 29 107302

    [6]

    Shi L, Yan Z W 2013 Eur. Phys. J. B 86 244

    [7]

    Li B X, Zheng J, Chi F 2014 Chin. Phys. Lett. 31 057302

    [8]

    Feng Z Y, Yan Z W 2016 Chin. Phys. B 25 107804

    [9]

    Li W P, Xiao J L, Yin J W, Yu Y F, Wang Z W 2010 Chin. Phys. B 19 047102

    [10]

    Chen Y J, Xiao J L 2013 J. Low Temp. Phys. 170 60

    [11]

    Bai X F, Xin W, Yin H W, Eerdunchaolu 2017 Int. J. Theor. Phys. 56 1673

    [12]

    Sun Y, Ding Z H, Xiao J L 2017 J. Electron. Mater. 46 439

    [13]

    Gu J, Liang J J 2005 Acta Phys. Sin. 54 5335 (in Chinese)[谷娟, 梁九卿 2005 物理学报 54 5335]

    [14]

    Fotue A J, Kenfack S C, Tiotsop M, Issofa N, Tabue Djemmo M P, Wirngo A V, Fotsin H, Fai L C 2016 Eur. Phys. J. Plus. 131 75

    [15]

    Jacak L, Hawrylak P, Wojs A 1998 Quantum Dots (Berlin:Springer)

    [16]

    Adamowski J, Sobkowicz M, Szafran B, Bednarek S 2000 Phys. Rev. B 62 4234

    [17]

    Xie W F 2003 Solid State Commun. 127 401

    [18]

    Hai G Q, Peeters F M, Devreese J T 1993 Phys. Rev. B 47 10358

    [19]

    Liang S D, Chen C Y, Jiang S C, Lin D L 1996 Phys. Rev. B 53 15459

    [20]

    Xiao J L 2016 Int. J. Theor. Phys. 55 147

    [21]

    Khordad R, Goudarzi S, Bahramiyan H 2016 Indian J. Phys. 90 659

    [22]

    Wei X W, Qi B, Xiao J L 2015 J. Low Temp. Phys. 179 166

    [23]

    Miao X J, Sun Y, Xiao J L 2015 J. Korean Phys. Soc. 67 1197

    [24]

    Lee T D, Low F M, Pines S D 1953 Phys. Rev. 90 297

    [25]

    Landau L D, Pekar S I 1948 Zh. Eksp. Teor. Fiz. 18 419

    [26]

    Pekar S I, Deigen M F 1948 Zh. Eksp. Teor. Fiz. 18 481

    [27]

    Pekar S I 1954 Untersuchungen ber die Elektronentheorie der Kristalle (Berlin: Akademie Verlag)

    [28]

    Li W P, Yin J W, Yu Y F, Xiao J L, Wang Z W 2009 Int. J. Theor. Phys. 48 3339

    [29]

    Eerdunchaolu, Xiao J L 2007 J. Phys. Soc. Jpn. 76 044702

    [30]

    Li S S, Kong X J 1992 J. Phys. Condens. Matter 4 4815

    [31]

    Li S S, Xia J B 2007 J. Appl. Phys. 101 093716

    [32]

    Li S S, Xia J B 2007 Phys. Lett. A 366 120

  • [1]

    Dou X M, Ying Y U, Sun B Q, Jiang D S, Ni H Q, Niu Z C 2012 Chin. Phys. Lett. 29 104203

    [2]

    Wang H Y, Su D, Yang S, Dou X M, Zhu H J, Jiang D S, Ni H Q, Niu Z C, Zhao C L, Sun B Q 2015 Chin. Phys. Lett. 32 107804

    [3]

    Yang S, Dou X M, Yu Y, Ni H Q, Niu Z C, Jiang D S, Sun B Q 2015 Chin. Phys. Lett. 32 077804

    [4]

    Xue Y Z, Chen Z S, Ni H Q, Niu Z C, Jiang D S, Dou X M, Sun B Q 2017 Chin. Phys. B 26 084202

    [5]

    Li B X, Zheng J, Chi F 2012 Chin. Phys. Lett. 29 107302

    [6]

    Shi L, Yan Z W 2013 Eur. Phys. J. B 86 244

    [7]

    Li B X, Zheng J, Chi F 2014 Chin. Phys. Lett. 31 057302

    [8]

    Feng Z Y, Yan Z W 2016 Chin. Phys. B 25 107804

    [9]

    Li W P, Xiao J L, Yin J W, Yu Y F, Wang Z W 2010 Chin. Phys. B 19 047102

    [10]

    Chen Y J, Xiao J L 2013 J. Low Temp. Phys. 170 60

    [11]

    Bai X F, Xin W, Yin H W, Eerdunchaolu 2017 Int. J. Theor. Phys. 56 1673

    [12]

    Sun Y, Ding Z H, Xiao J L 2017 J. Electron. Mater. 46 439

    [13]

    Gu J, Liang J J 2005 Acta Phys. Sin. 54 5335 (in Chinese)[谷娟, 梁九卿 2005 物理学报 54 5335]

    [14]

    Fotue A J, Kenfack S C, Tiotsop M, Issofa N, Tabue Djemmo M P, Wirngo A V, Fotsin H, Fai L C 2016 Eur. Phys. J. Plus. 131 75

    [15]

    Jacak L, Hawrylak P, Wojs A 1998 Quantum Dots (Berlin:Springer)

    [16]

    Adamowski J, Sobkowicz M, Szafran B, Bednarek S 2000 Phys. Rev. B 62 4234

    [17]

    Xie W F 2003 Solid State Commun. 127 401

    [18]

    Hai G Q, Peeters F M, Devreese J T 1993 Phys. Rev. B 47 10358

    [19]

    Liang S D, Chen C Y, Jiang S C, Lin D L 1996 Phys. Rev. B 53 15459

    [20]

    Xiao J L 2016 Int. J. Theor. Phys. 55 147

    [21]

    Khordad R, Goudarzi S, Bahramiyan H 2016 Indian J. Phys. 90 659

    [22]

    Wei X W, Qi B, Xiao J L 2015 J. Low Temp. Phys. 179 166

    [23]

    Miao X J, Sun Y, Xiao J L 2015 J. Korean Phys. Soc. 67 1197

    [24]

    Lee T D, Low F M, Pines S D 1953 Phys. Rev. 90 297

    [25]

    Landau L D, Pekar S I 1948 Zh. Eksp. Teor. Fiz. 18 419

    [26]

    Pekar S I, Deigen M F 1948 Zh. Eksp. Teor. Fiz. 18 481

    [27]

    Pekar S I 1954 Untersuchungen ber die Elektronentheorie der Kristalle (Berlin: Akademie Verlag)

    [28]

    Li W P, Yin J W, Yu Y F, Xiao J L, Wang Z W 2009 Int. J. Theor. Phys. 48 3339

    [29]

    Eerdunchaolu, Xiao J L 2007 J. Phys. Soc. Jpn. 76 044702

    [30]

    Li S S, Kong X J 1992 J. Phys. Condens. Matter 4 4815

    [31]

    Li S S, Xia J B 2007 J. Appl. Phys. 101 093716

    [32]

    Li S S, Xia J B 2007 Phys. Lett. A 366 120

  • [1] 李元和, 卓志瑶, 王健, 黄君辉, 李叔伦, 倪海桥, 牛智川, 窦秀明, 孙宝权. 金纳米颗粒调控量子点激子自发辐射速率. 物理学报, 2022, 71(6): 067804. doi: 10.7498/aps.71.20211863
    [2] 李唯, 符婧, 杨贇贇, 何济洲. 光子驱动量子点制冷机. 物理学报, 2019, 68(22): 220501. doi: 10.7498/aps.68.20191091
    [3] 周亮亮, 吴宏博, 李学铭, 唐利斌, 郭伟, 梁晶. ZrS2量子点: 制备、结构及光学特性. 物理学报, 2019, 68(14): 148501. doi: 10.7498/aps.68.20190680
    [4] 何月娣, 徐征, 赵谡玲, 刘志民, 高松, 徐叙瑢. 混合量子点器件电致发光的能量转移研究. 物理学报, 2014, 63(17): 177301. doi: 10.7498/aps.63.177301
    [5] 刘志民, 赵谡玲, 徐征, 高松, 杨一帆. 红光量子点掺杂PVK体系的发光特性研究. 物理学报, 2014, 63(9): 097302. doi: 10.7498/aps.63.097302
    [6] 张盼君, 孙慧卿, 郭志友, 王度阳, 谢晓宇, 蔡金鑫, 郑欢, 谢楠, 杨斌. 含有量子点的双波长LED的光谱调控. 物理学报, 2013, 62(11): 117304. doi: 10.7498/aps.62.117304
    [7] 姚志东, 李炜, 高先龙. 点缺陷扶手型石墨烯量子点的电子性质研究. 物理学报, 2012, 61(11): 117105. doi: 10.7498/aps.61.117105
    [8] 周运清, 孔令民, 王瑞, 张存喜. 微波作用下有直接隧穿量子点系统中的泵流特性. 物理学报, 2011, 60(7): 077202. doi: 10.7498/aps.60.077202
    [9] 张学贵, 王茺, 鲁植全, 杨杰, 李亮, 杨宇. 离子束溅射自组装Ge/Si量子点生长的演变. 物理学报, 2011, 60(9): 096101. doi: 10.7498/aps.60.096101
    [10] 琚鑫, 郭健宏. 点间耦合强度对三耦合量子点系统微分电导的影响. 物理学报, 2011, 60(5): 057302. doi: 10.7498/aps.60.057302
    [11] 冯昊, 俞重远, 刘玉敏, 芦鹏飞, 贾博雍, 姚文杰, 田宏达, 赵伟, 徐子欢. 应变补偿层对量子点生长影响的理论研究. 物理学报, 2010, 59(2): 765-770. doi: 10.7498/aps.59.765
    [12] 潘洪哲, 徐明, 陈丽, 孙媛媛, 王永龙. 单层正三角锯齿型石墨烯量子点的电子结构和磁性. 物理学报, 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
    [13] 尹辑文, 肖景林, 于毅夫, 王子武. 库仑势对抛物量子点量子比特消相干的影响. 物理学报, 2008, 57(5): 2695-2698. doi: 10.7498/aps.57.2695
    [14] 彭红玲, 韩 勤, 杨晓红, 牛智川. 1.3μm量子点垂直腔面发射激光器高频响应的优化设计. 物理学报, 2007, 56(2): 863-870. doi: 10.7498/aps.56.863
    [15] 蔡承宇, 周旺民. Ge/Si半导体量子点的应变分布与平衡形态. 物理学报, 2007, 56(8): 4841-4846. doi: 10.7498/aps.56.4841
    [16] 郑瑞伦. 圆柱状量子点量子导线复合系统的激子能量和电子概率分布. 物理学报, 2007, 56(8): 4901-4907. doi: 10.7498/aps.56.4901
    [17] 程 成, 张 航. 半导体纳米晶体PbSe量子点光纤放大器. 物理学报, 2006, 55(8): 4139-4144. doi: 10.7498/aps.55.4139
    [18] 刘世荣, 黄伟其, 秦朝建. 氧化硅层中的锗纳米晶体团簇量子点. 物理学报, 2006, 55(5): 2488-2491. doi: 10.7498/aps.55.2488
    [19] 邓宇翔, 颜晓红, 唐娜斯. 量子点环的电子输运研究. 物理学报, 2006, 55(4): 2027-2032. doi: 10.7498/aps.55.2027
    [20] 侯春风, 郭汝海. 椭圆柱形量子点的能级结构. 物理学报, 2005, 54(5): 1972-1976. doi: 10.7498/aps.54.1972
计量
  • 文章访问数:  5783
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-19
  • 修回日期:  2018-05-15
  • 刊出日期:  2018-09-05

/

返回文章
返回