搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光纤中超短脉冲非线性传输机理与特定光谱选择技术的多波长飞秒激光的产生

吕志国 杨直 李峰 李强龙 王屹山 杨小君

引用本文:
Citation:

基于光纤中超短脉冲非线性传输机理与特定光谱选择技术的多波长飞秒激光的产生

吕志国, 杨直, 李峰, 李强龙, 王屹山, 杨小君

Generation of multi-wavelength femtosecond laser pulse based on nonlinear propagation of high peak power ultrashort laser pulse in single-mode fiber and spectral selectivity technology

Lü Zhi-Guo, Yang Zhi, Li Feng, Li Qiang-Long, Wang Yi-Shan, Yang Xiao-Jun
PDF
导出引用
  • 高集成、高可靠性宽调谐飞秒激光源在超快光谱学、量子光学及生物成像等研究与应用领域具有重要价值.如在生物多光子显微成像中,具有适中能量的宽调谐飞秒激光源不仅可满足多种生物组织荧光激发所需的峰值功率与激发波长,而且也可以显著提升非线性荧光产生效率、成像分辨率以及增大成像穿透深度.采用自主研发的高可靠性全保偏光纤飞秒激光器作为抽运源,基于低色散光纤中高峰值功率飞秒激光脉冲非线性传输引起的光谱加宽机制,本文开展了多波长全光纤飞秒激光产生技术研究.通过采用中心波长在980,1000,1050,1070与1100 nm的带通滤波片选择性地对单模光纤输出光谱中最左边与最右边光谱旁瓣进行滤波,在上述中心波长处分别可获得203,195,196,187与194 fs的激光输出.本文提出的基于全光纤飞秒激光脉冲在单模光纤中非线性传输引起的光谱加宽机制与特定光谱选择技术的实验方案为高集成、高可靠性宽调谐飞秒激光源的实现提供了新的研究途径.
    Highly-integrated high-reliability widely-tunable femtosecond laser sources have important application values in various research and application fields, such as ultrafast spectroscopy, quantum optics, remote sensing and bio-imaging. In multi-photon excited fluorescence microscopy, femtosecond laser sources with moderate pulse energy and wide wavelength tunable range can not only meet the application requirements of the different tissue structures for the peak power and excitation wavelength, but also improve the nonlinear fluorescence efficiency and imaging resolution of the sample, and thus enhancing the penetration depth. Considering the extensive application prospect and important scientific research significance of the widely tunable femtosecond laser, in this paper we conduct an experimental research of the high repetition rate multi-wavelength femtosecond laser generation in compact sized and low-cost configuration based on the nonlinear propagation scheme of the high peak power femtosecond laser pulses in single-mode fiber. In experiment, we first construct a highly-integrated reliable all-polarization-maintaining fiber femtosecond laser amplifier, which mainly consists of an environmentally stable all-polarization-maintaining fiber mode-locked laser oscillator, single-mode fiber stretcher, a single-mode power pre-amplifier, a dual-cladding Yb-fiber amplifier, and transmission grating-pair compressor. Self-starting mode-locked operation is assured with a semiconductor saturable absorber mirror, and intra-cavity dispersion compensation is realized by a chirped fiber Bragg grating in the mode-locked oscillator. The mode-locked oscillator, which delivers laser pulses with center wavelength peaked at 1035 nm, is robust operation as temperature changes from 10℃ to 40℃ and the measured power fluctuation is less than 1% RMS over 168 hours at 23℃. The amplified high repetition rate laser pulses are compressed in a double-pass 1000 lines/mm transmission grating-pair compressor. After compression, laser pulses with 5.83 W average power and 264 fs pulse duration at 34 MHz repetition rate can be obtained. Simultaneously, we also study the dependence of the compressed pulse duration on the amplified output power. Employing a home-made high reliable compact sized all-polarization-maintaining fiber femtosecond laser as a pump source and low-cost single-mode fiber as a nonlinear medium, the generation technology of the widely tunable femtosecond laser in only fiber format is also studied based on the self-phase modulation nonlinear spectral broadening mechanism. Simultaneously, in order to reduce the effect of the dispersion on the spectral broadening as much as possible, an 80-mm-long fiber is used in experiment. The used single-mode spectral broadening fiber has a 6-m-diameter core and 20 fs2/mm dispersion coefficient. By coupling the femtosecond pump laser pulses into the 6-m-diameter fiber core, the output spectrum presents a significant nonlinear broadening. The coupled pump power can be continuously adjusted by a combination of a half-wave plate and a Glan laser polarizer. After bandpass filtering the leftmost and rightmost spectral lobes in self-phase modulation and self-steeping induced broadened spectrum with bandpass filters centered at 980, 1000, 1050, 1070 and 1100 nm, the laser pulses with 203, 195, 196, 187, and 194 fs pulse duration can be obtained at the corresponding center wavelengths. The experimental scheme presented in this paper, which is based on the nonlinear spectral broadening of the highreliability femtosecond laser pulse in single-mode fiber and the spectral selectivity technology, provides a new research approach to the realization of the highly-compacted reliable widely-tunable femtosecond laser sources and has important research significance.
      通信作者: 吕志国, lvzhiguo@opt.ac.cn;yangzhi@opt.ac.cn ; 杨直, lvzhiguo@opt.ac.cn;yangzhi@opt.ac.cn
    • 基金项目: 中国科学院西部之光人才培养引进计划(批准号:XAB2016B21)和国家自然科学基金(批准号:61690222)资助的课题.
      Corresponding author: Lü Zhi-Guo, lvzhiguo@opt.ac.cn;yangzhi@opt.ac.cn ; Yang Zhi, lvzhiguo@opt.ac.cn;yangzhi@opt.ac.cn
    • Funds: Project supported by the Chinese Academy of Sciences Light of West China Program (Grant No. XAB2016B21) and the National Natural Science Foundation of China (Grant No. 61690222).
    [1]

    Torrisi L 2018 Opt. Laser. Technol. 99 7

    [2]

    Li C, Benedick A J, Fendel P, Glenday A G, Krtner F X, Phillips D F, Walsworth R L 2008 Nature 452 610

    [3]

    Feuer A, Kunz C, Kraus M, Onuseit V, Weber R, Graf T, Ingildeev D, Hermanutz F 2014 Proc. SPIE 8967 89670H

    [4]

    Zhan M J, Ye P, Teng H, He X K, Zhang W, Zhong S Y, Wang L F, Yun C X, Wei Z Y 2013 Chin. Phys. Lett. 30 093201

    [5]

    Chu Y X, Gan Z B, Liang X Y, Yu L H, Lu X M, Wang C, Wang X L, Xu L, Lu H H, Yin D J, Leng Y X, Li R X, Xu Z Z 2015 Opt. Lett. 40 5011

    [6]

    Tian W L, Wang Z H, Zhu J F, Wei Z Y 2016 Chin. Phys. B 25 014207

    [7]

    Thomas H 2008 Optik Photonik 3 35

    [8]

    Otto H J, Stutzki F, Modsching N, Jauregui C, Limpert J, Tnnermann A 2014 Opt. Lett. 39 6446

    [9]

    Zhao J, Li W X, Wang C, Liu Y, Zeng H P 2014 Opt. Express 22 32214

    [10]

    Rser F, Eidam T, Rothhardt J, Schmidt O, Schimpf D N, Limpert J, Tnnermann A 2007 Opt. Lett. 32 3495

    [11]

    Kalaycioglu H, Oktem B, Şenel , Paltani P P, Ilday F 2010 Opt. Lett. 35 959

    [12]

    Lv Z G, Teng H, Wang L N, Wang J L, Wei Z Y 2016 Chin. Phys. B 25 094208

    [13]

    Lv Z G, Yang Z, Li F, Yang X J, Li Q L, Zhang X, Wang Y S, Zhao W 2018 Opt. Laser Technol. 100 282

    [14]

    Wang X J, Xiao Q R, Yan P, Chen X, Li D, Du C, Mo Q, Yi Y Q, Pan R, Gong M L 2015 Acta Phys. Sin. 64 164204 (in Chinese) [王雪娇, 肖起榕, 闫平, 陈霄, 李丹, 杜成, 莫琦, 衣永青, 潘蓉, 巩马理 2015 物理学报 64 164204]

    [15]

    Zhang L M, Zhou S H, Zhao H, Zhang K, Hao J P, Zhang D Y, Zhu C, Li Y, Wang X F, Zhang H B 2014 Acta Phys. Sin. 63 134205 (in Chinese) [张利明, 周寿桓, 赵鸿, 张昆, 郝金坪, 张大勇, 朱辰, 李尧, 王雄飞, 张浩彬 2014 物理学报 63 134205]

    [16]

    Chang G Q, Chen L J, Krtner F X 2010 Opt. Lett. 35 2361

    [17]

    Gottschall T, Meyer T, Schmitt M, Popp J, Limpert J, Tnnermann A 2015 Opt. Express 23 23968

    [18]

    Zhang L, Yang S G, Han Y, Chen H W, Chen M H, Xie S Z 2013 J. Opt. 15 075201

    [19]

    Zhang L, Yang S G, Wang X J, Gou D D, Li X L, Chen H W, Chen M H, Xie S Z 2013 Opt. Lett. 38 4534

    [20]

    Liu W, Li C, Zhang Z G, Krtner F X, Chang G Q 2016 Opt. Express 24 15328

  • [1]

    Torrisi L 2018 Opt. Laser. Technol. 99 7

    [2]

    Li C, Benedick A J, Fendel P, Glenday A G, Krtner F X, Phillips D F, Walsworth R L 2008 Nature 452 610

    [3]

    Feuer A, Kunz C, Kraus M, Onuseit V, Weber R, Graf T, Ingildeev D, Hermanutz F 2014 Proc. SPIE 8967 89670H

    [4]

    Zhan M J, Ye P, Teng H, He X K, Zhang W, Zhong S Y, Wang L F, Yun C X, Wei Z Y 2013 Chin. Phys. Lett. 30 093201

    [5]

    Chu Y X, Gan Z B, Liang X Y, Yu L H, Lu X M, Wang C, Wang X L, Xu L, Lu H H, Yin D J, Leng Y X, Li R X, Xu Z Z 2015 Opt. Lett. 40 5011

    [6]

    Tian W L, Wang Z H, Zhu J F, Wei Z Y 2016 Chin. Phys. B 25 014207

    [7]

    Thomas H 2008 Optik Photonik 3 35

    [8]

    Otto H J, Stutzki F, Modsching N, Jauregui C, Limpert J, Tnnermann A 2014 Opt. Lett. 39 6446

    [9]

    Zhao J, Li W X, Wang C, Liu Y, Zeng H P 2014 Opt. Express 22 32214

    [10]

    Rser F, Eidam T, Rothhardt J, Schmidt O, Schimpf D N, Limpert J, Tnnermann A 2007 Opt. Lett. 32 3495

    [11]

    Kalaycioglu H, Oktem B, Şenel , Paltani P P, Ilday F 2010 Opt. Lett. 35 959

    [12]

    Lv Z G, Teng H, Wang L N, Wang J L, Wei Z Y 2016 Chin. Phys. B 25 094208

    [13]

    Lv Z G, Yang Z, Li F, Yang X J, Li Q L, Zhang X, Wang Y S, Zhao W 2018 Opt. Laser Technol. 100 282

    [14]

    Wang X J, Xiao Q R, Yan P, Chen X, Li D, Du C, Mo Q, Yi Y Q, Pan R, Gong M L 2015 Acta Phys. Sin. 64 164204 (in Chinese) [王雪娇, 肖起榕, 闫平, 陈霄, 李丹, 杜成, 莫琦, 衣永青, 潘蓉, 巩马理 2015 物理学报 64 164204]

    [15]

    Zhang L M, Zhou S H, Zhao H, Zhang K, Hao J P, Zhang D Y, Zhu C, Li Y, Wang X F, Zhang H B 2014 Acta Phys. Sin. 63 134205 (in Chinese) [张利明, 周寿桓, 赵鸿, 张昆, 郝金坪, 张大勇, 朱辰, 李尧, 王雄飞, 张浩彬 2014 物理学报 63 134205]

    [16]

    Chang G Q, Chen L J, Krtner F X 2010 Opt. Lett. 35 2361

    [17]

    Gottschall T, Meyer T, Schmitt M, Popp J, Limpert J, Tnnermann A 2015 Opt. Express 23 23968

    [18]

    Zhang L, Yang S G, Han Y, Chen H W, Chen M H, Xie S Z 2013 J. Opt. 15 075201

    [19]

    Zhang L, Yang S G, Wang X J, Gou D D, Li X L, Chen H W, Chen M H, Xie S Z 2013 Opt. Lett. 38 4534

    [20]

    Liu W, Li C, Zhang Z G, Krtner F X, Chang G Q 2016 Opt. Express 24 15328

  • [1] 许海琛, 付士杰, 田浩, 盛泉, 史伟, 姚建铨. 一种基于反谐振结构的三能级掺钕激光光纤设计. 物理学报, 2024, 73(14): 144205. doi: 10.7498/aps.73.20240463
    [2] 陶在红, 秦媛媛, 孙斌, 孙小菡. 光纤中单光子传输方程的求解及分析. 物理学报, 2016, 65(13): 130301. doi: 10.7498/aps.65.130301
    [3] 姚云华, 卢晨晖, 徐淑武, 丁晶新, 贾天卿, 张诗按, 孙真荣. 飞秒激光脉冲整形技术及其应用. 物理学报, 2014, 63(18): 184201. doi: 10.7498/aps.63.184201
    [4] 张龙, 韩海年, 侯磊, 于子蛟, 朱政, 贾玉磊, 魏志义. 基于光子晶体光纤和拉锥式单模光纤的超连续光谱产生的实验研究. 物理学报, 2014, 63(19): 194208. doi: 10.7498/aps.63.194208
    [5] 马晓璐, 李培丽, 郭海莉, 张一, 朱天阳, 曹凤娇. 基于单模光纤的交叉相位调制型频率分辨光学开关超短脉冲测量. 物理学报, 2014, 63(24): 240601. doi: 10.7498/aps.63.240601
    [6] 王文亭, 张楠, 王明伟, 何远航, 杨建军, 朱晓农. 飞秒激光烧蚀金属靶的冲击温度. 物理学报, 2013, 62(21): 210601. doi: 10.7498/aps.62.210601
    [7] 王文亭, 张楠, 王明伟, 何远航, 杨建军, 朱晓农. 飞秒激光烧蚀固体靶的冲击压强. 物理学报, 2013, 62(17): 170601. doi: 10.7498/aps.62.170601
    [8] 卢发铭, 夏元钦, 张盛, 陈德应. 飞秒强激光脉冲驱动Ne高次谐波蓝移产生相干可调谐极紫外光实验研究. 物理学报, 2013, 62(2): 024212. doi: 10.7498/aps.62.024212
    [9] 黄毅泽, 李毅, 王海方, 俞晓静, 张虎, 张伟, 朱慧群, 孙若曦, 周晟, 张宇明. 双光纤光栅外腔半导体激光器相干失效研究. 物理学报, 2012, 61(1): 014201. doi: 10.7498/aps.61.014201
    [10] 王晓琰, 李曙光, 刘硕, 张磊, 尹国冰, 冯荣普. 中红外高双折射高非线性宽带正常色散As2 S3光子晶体光纤. 物理学报, 2011, 60(6): 064213. doi: 10.7498/aps.60.064213
    [11] 王士鹤, 任立勇, 刘宇. 光纤中基于双宽带抽运的受激布里渊散射增益谱展宽及慢光传输中脉冲失真减小的理论研究. 物理学报, 2009, 58(6): 3943-3948. doi: 10.7498/aps.58.3943
    [12] 张驰, 胡明列, 宋有建, 张鑫, 柴路, 王清月. 自由耦合输出的大模场面积光子晶体光纤锁模激光器. 物理学报, 2009, 58(11): 7727-7734. doi: 10.7498/aps.58.7727
    [13] 王鹿霞, 樊飞. 飞秒激光作用下异质结的线性吸收谱研究. 物理学报, 2009, 58(2): 1326-1331. doi: 10.7498/aps.58.1326
    [14] 王晓雷, 张 楠, 赵友博, 李智磊, 翟宏琛, 朱晓农. 飞秒激光激发空气电离的阈值研究. 物理学报, 2008, 57(1): 354-357. doi: 10.7498/aps.57.354
    [15] 刘博文, 胡明列, 宋有建, 柴 路, 王清月. 亚百飞秒高功率掺镱大模面积光子晶体光纤飞秒激光放大器的实验研究. 物理学报, 2008, 57(11): 6921-6925. doi: 10.7498/aps.57.6921
    [16] 李成斌, 贾天卿, 孙海轶, 李晓溪, 徐世珍, 冯东海, 王晓峰, 葛晓春, 徐至展. 飞秒激光对氟化镁烧蚀机理研究. 物理学报, 2006, 55(1): 217-220. doi: 10.7498/aps.55.217
    [17] 倪 赟, 印建平. 采用四根单模光纤束实现消逝波原子(或分子)波导的理论分析. 物理学报, 2006, 55(1): 130-136. doi: 10.7498/aps.55.130
    [18] 孔伟金, 刘世杰, 沈 健, 沈自才, 邵建达, 范正修. 飞秒激光用多层介质膜脉宽压缩光栅的设计. 物理学报, 2006, 55(3): 1143-1147. doi: 10.7498/aps.55.1143
    [19] 何 峰, 余 玮, 陆培祥. 飞秒强激光作用下线性等离子体层中光场和电子密度的自洽分布. 物理学报, 2003, 52(8): 1965-1969. doi: 10.7498/aps.52.1965
    [20] 光纤在光子相关光谱中的研究. 物理学报, 2001, 50(8): 1507-1511. doi: 10.7498/aps.50.1507
计量
  • 文章访问数:  6626
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-27
  • 修回日期:  2018-06-21
  • 刊出日期:  2019-09-20

/

返回文章
返回