搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冷等离子体强化制备金属催化剂研究进展

李壮 底兰波 于锋 张秀玲

引用本文:
Citation:

冷等离子体强化制备金属催化剂研究进展

李壮, 底兰波, 于锋, 张秀玲

Research progress of metal catalysts enhanced synthesized by cold plasma

Li Zhuang, Di Lan-Bo, Yu Feng, Zhang Xiu-Ling
PDF
导出引用
  • 冷等离子体属于非热平衡等离子体,具有较高的电子能量和较低的气体温度,是一种制备金属催化剂的绿色新方法.等离子体强化制备金属催化剂包含复杂的物理和化学多相反应.一方面,等离子体提供的高活性环境不但可以加速化学反应,使反应时间从数小时缩短至数分钟,还可以使热力学或者动力学上不可行的反应发生,实现非常规制备;另一方面,等离子体强化制备过程中,在介观尺度上等离子体对相接触行为的影响,可使获得的金属催化剂结构区别于传统方法制备的催化剂.本综述总结了冷等离子体制备金属催化剂的反应器结构、物理化学机理、获得金属催化剂的结构特性、制备面临的挑战,并对未来发展进行了展望.重点阐述了冷等离子体反应器、制备机制及其对金属催化剂结构和性能的影响.
    Cold plasma is a kind of non-thermal plasma, and characterized by high electron temperature (1-10 eV) and low gas temperature, which can be close to room temperature. It has been proved to be a fast, facile and environmentally friendly new method for synthesizing supported metal catalysts. Enhanced synthesis of metal catalysts by cold plasma consists of complex physical and chemical reactions. On the one hand, the active environment provided by cold plasma, can not only speed up the chemical reactions, shorten the reaction time from a few hours to several minutes, but also realize the kinetically or thermodynamically infeasible chemical reactions to achieve unconventional preparation. On the other hand, the phase contact behavior on a mesoscopic scale is influenced during cold plasma enhanced preparation, thereby the metal catalysts with structure different from that synthesized by traditional method. This review summarizes the reactor structure, physical and chemical mechanism for synthesizing metal catalysts by cold plasma, as well as the structure characteristics of the obtained metal catalysts. According to the working pressure, cold plasma can be categorized into low-pressure (LP) cold plasma and atmospheric-pressure (AP) cold plasma. The LP cold plasma is often generated by radio frequency glow discharge or direct current glow discharge, while the AP cold plasma is generally generated by dielectric barrier discharge and AP cold plasma jet. Energetic electrons are deemed to be the reducing agents for LP cold plasma. However, due to the frequent collisions among the electrons and gas molecules at atmospheric pressure, the electron energy in AP cold plasma is not high enough to reduce the metal ions directly. Therefore, hydrogen-containing gases are often adopted to generate active hydrogen species to reduce the metal ions. The process of synthesizing the metal catalysts by using the cold plasma is a fast, low-temperature process, and in the preparation process there exists a strong Coulomb repulsion. Therefore, metal catalysts with small size and high dispersion of metal nanoparticles, strong metal-support interaction, as well as specific metal structures (alloying degree and crystallinity) and modified supports can be obtained. Correspondingly, metal catalysts with high catalytic activity and stability can be synthesized. In addition, the challenges of preparing the cold plasma are discussed, and the future development is also prospected.
      通信作者: 底兰波, dilanbo@163.com;xiulz@sina.com ; 张秀玲, dilanbo@163.com;xiulz@sina.com
    • 基金项目: 国家自然科学基金(批准号:21773020,21673026)、国家自然科学基金青年科学基金(批准号:11505019)、辽宁省高等学校创新人才支持计划(批准号:LR2017025)和辽宁省自然科学基金(批准号:20180550085)资助的课题.
      Corresponding author: Di Lan-Bo, dilanbo@163.com;xiulz@sina.com ; Zhang Xiu-Ling, dilanbo@163.com;xiulz@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21773020, 21673026), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11505019), the Liaoning Innovative Talents in University, China (Grant No. LR2017025), and the Natural Science Foundation of Liaoning Province, China (Grant No. 20180550085).
    [1]

    Wang L, Yi Y, Wu C, Guo H, Tu X 2017 Angew. Chem. 129 13867

    [2]

    Sun Q D, Yu B, Liu C J 2012 Plasma Chem. Plasma Process. 32 201

    [3]

    Liu C J, Zhao Y, Li Y, Zhang D S, Chang Z, Bu X H 2014 ACS Sustainable Chem. Eng. 2 3

    [4]

    Wang Q, Song M, Chen C, Wei Y, Zuo X, Wang X 2012 Appl. Phys. Lett. 101 033103

    [5]

    Zhou T, Jang K, Jang B W L 2013 Catal. Today 211 147

    [6]

    Zhu B, Li X S, Liu J L, Liu J B, Zhu X, Zhu A M 2015 Appl. Catal. B 179 69

    [7]

    Wang N, Shen K, Yu X, Qian W, Chu W 2013 Catal. Sci. Technol. 3 2278

    [8]

    Guo F, Xu J Q, Chu W 2015 Catal. Today 256 124

    [9]

    Zhang C, Zhou Y, Shao T, Xie Q, Xu J, Yang W 2014 Appl. Surf. Sci. 311 468

    [10]

    Shao T, Zhang C, Long K, Zhang D, Wang J, Yan P, Zhou Y 2010 Appl. Surf. Sci. 256 3888

    [11]

    Pakhare D, Spivey J 2014 Chem. Soc. Rev. 43 7813

    [12]

    Liu C, Ye J, Jiang J, Pan Y 2011 ChemCatChem 3 529

    [13]

    Zheng Y, Jiao Y, Jaroniec M, Qiao S Z 2015 Angew. Chem. Int. Ed. 54 52

    [14]

    Cheng N, Stambula S, Wang D, Banis M, Liu J, Riese A, Xiao B, Li R, Sham T K, Liu L M, Botton G A, Sun X 2016 Nat. Commun. 7 13638

    [15]

    Qiao B, Liu J, Wang Y G, Lin Q, Liu X, Wang A, Li J, Zhuang T, Liu J 2015 ACS Catal. 5 6249

    [16]

    Saavedra J, Whittaker T, Chen Z, Pursell C J, Rioux R M, Chandler B D 2016 Nat. Chem. 8 584

    [17]

    Huang H, Xu Y, Feng Q, Leung D Y C 2015 Catal. Sci. Technol. 5 2649

    [18]

    Witvrouwen T, Paulussen S, Sels B 2012 Plasma Processes Polym. 9 750

    [19]

    Liu C, Li M, Wang J, Zhou X, Guo Q, Yan J, Li Y 2016 Chin. J. Catal. 37 340

    [20]

    Taghvaei H, Heravi M, Rahimpour M R 2017 Plasma Processes Polym. 14 1600204

    [21]

    Brault P 2016 Plasma Processes Polym. 13 10

    [22]

    Di L, Zhang J, Zhang X 2018 Plasma Processes Polym. 15 1700234

    [23]

    Wang Z, Zhang Y, Neyts E C, Cao X, Zhang X, Jang B W L, Liu C J 2018 ACS Catal. 8 2093

    [24]

    Yang W, Yu Y, Wang L, Yang C, Li H 2015 Nanoscale 7 2877

    [25]

    Yu Y, Yang W, Sun X, Zhu W, Li X Z, Sellmyer D J, Sun S 2014 Nano Lett. 14 2778

    [26]

    Yang W, Lei W, Yu Y, Zhu W, George T A, Li X Z, Sellmyer D J, Sun S 2015 J. Mater. Chem. C 3 7075

    [27]

    Yu Y, Sun K, Tian Y, Li X Z, Kramer M J, Sellmyer D J, Shield J E, Sun S 2013 Nano Lett. 13 4975

    [28]

    Yu Y, Mukherjee P, Tian Y, Li X Z, Shield J E, Sellmyer D J 2014 Nanoscale 6 12050

    [29]

    Qiao B, Wang A, Yang X, Allard L F, Jiang Z, Cui Y, Liu J, Li J, Zhang T 2011 Nat. Chem. 3 634

    [30]

    Abbet S, Sanchez A, Heiz U, Schneider W D, Ferrari A M, Pacchioni G, Rösch N 2000 J. Am. Chem. Soc. 122 3453

    [31]

    Moses-DeBusk M, Yoon M, Allard L F, Mullins D R, Wu Z, Yang X, Veith G, Stocks G M, Narula C K 2013 J. Am. Chem. Soc. 135 12634

    [32]

    Lu J, Aydin C, Browning N D, Gates B C 2012 Angew. Chem. 124 5944

    [33]

    Kistler J D, Chotigkrai N, Xu P, Enderle B, Praserthdam P, Chen C Y, Browning N D, Gates B C 2014 Angew. Chem. Int. Ed. 53 8904

    [34]

    Sun S, Zhang G, Gauquelin N, Chen N, Zhou J, Yang S, Chen W, Meng X, Geng D, Banis M N, Li R, Ye S, Knights S, Botton G A, Sham T K, Sun X 2013 Sci. Rep. 3 1775

    [35]

    Hu P, Huang Z, Amghouz Z, Makkee M, Xu F, Kapteijn F, Dikhtiarenko A, Chen Y, Gu X, Tang X 2014 Angew. Chem. 126 3486

    [36]

    Huang Z, Gu X, Cao Q, Hu P, Hao J, Li J, Tang X 2012 Angew. Chem. 124 4274

    [37]

    Zhang H, Kawashima K, Okumura M, Toshima N 2014 J. Mater. Chem. A 2 13498

    [38]

    Guo X, Fang G, Li G, Ma H, Fan H, Yu L, Ma C, Wu X, Deng D, Wei M, Tan D, Si R, Zhang S, Li S, Sun L, Tang Z, Pan X, Bao X 2014 Science 344 616

    [39]

    Liu P, Zhao Y, Qin R, Mo S, Chen G, Gu L, Chevrier D M, Zhang P, Guo Q, Zang D, Wu B, Fu G, Zheng N 2016 Science 352 797

    [40]

    Zhou Y, Xiang Z, Cao D, Liu C J 2014 Ind. Eng. Chem. Res. 53 1359

    [41]

    Wang W, Wang Z, Yang M, Zhong C J, Liu C J 2016 Nano Energy 25 26

    [42]

    Buitrago-Sierra R, García-Fernández M J, Pastor-Blas M M, Sepúlveda-Escribano A 2013 Green Chem. 15 1981

    [43]

    Wang W, Wang Z, Wang J, Zhong C J, Liu C J 2017 Adv. Sci. 4 1600486

    [44]

    Zhou Y 2014 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese)[周游 2014 博士学位论文 (天津: 天津大学)]

    [45]

    Hong J, Chu W, Chernavskii P A, Khodakov A Y 2010 J. Catal. 273 9

    [46]

    Ratanatawanate C, Macias M, Jang B W L 2005 Ind. Eng. Chem. Res. 44 9868

    [47]

    Li Y, Jang B W L 2011 Appl. Catal. A 392 173

    [48]

    Wu Y W, Chung W C, Chang M B 2015 Int. J. Hydrogen Energy 40 8071

    [49]

    Hua W, Jin L, He X, Liu J, Hu H 2010 Catal. Commun. 11 968

    [50]

    Di L, Li Z, Lee B, Park D W 2017 Int. J. Hydrogen Energy 42 11372

    [51]

    Zhang S, Li X S, Zhu B, Liu J L, Zhu X, Zhu A M, Jang B W L 2015 Catal. Today 256 142

    [52]

    Di L, Xu Z, Wang K, Zhang X 2013 Catal. Today 211 109

    [53]

    Qi B, Di L, Xu W, Zhang X 2014 J. Mater. Chem. A 2 11885

    [54]

    Li Y, Liu G, Lei S, Chu W, Dai X, Yin Y 2008 Plasma Sci. Technol. 10 551

    [55]

    Xu Y, Chen Y, Li J, Zhou J, Song M, Zhang X, Yin Y 2017 Int. J. Hydrogen Energ. 42 13085

    [56]

    Dao V D, Choi Y, Yong K, Larina L L, Shevaleevskiy O, Choi H S 2015 J. Power Sources 274 831

    [57]

    Dao V D, Tran C Q, Ko S H, Choi H S 2013 J. Mater. Chem. A 1 4436

    [58]

    Wang J, Kattel S, Wang Z, Chen J G, Liu C J 2018 ACS Appl. Mater. Inter. 10 21321

    [59]

    Wang W, Anderson C F, Wang Z, Wu W, Cui H, Liu C J 2017 Chem. Sci. 8 3310

    [60]

    Li Z, Meng J, Wang W, Wang Z, Li M, Chen T, Liu C J 2017 Carbohydr. Polym. 161 270

    [61]

    Li Z, Zhang X, Zhang Y, Duan D, Di L 2018 Plasma Sci. Technol. 20 014016

    [62]

    Di L, Zhang X, Lee B, Lu P, Ahn W S, Park D W 2017 Plasma Chem. Plasma Process. 37 1535

    [63]

    Zou J J, Zhang Y P, Liu C J 2006 Langmuir 22 11388

    [64]

    Hu S J, Long H L, Xu Y, Shang S Y, Yin Y X 2011 Chin. J. Catal. 32 340 (in Chinese)[胡诗婧, 龙华丽, 徐艳, 尚书勇, 印永祥 2011 催化学报 32 340]

    [65]

    Sawada Y, Tamaru H, Kogoma M, Kawase M, Hashimoto K 1996 J. Phys. D: Appl. Phys. 29 2539

    [66]

    Sawada Y, Taguchi N, Tachibana K 1999 Jpn. J. Appl. Phys. 38 6506

    [67]

    Di L, Zhang X, Xu Z, Wang K 2014 Plasma Chem. Plasma Process. 34 301

    [68]

    Kim T, Lee D H, Jo S, Pyun S H, Kim K T, Song Y H 2016 ChemCatChem 8 685

    [69]

    Di L, Zhang X, Xu Z 2014 Plasma Sci. Technol. 16 41

    [70]

    Dao V D, Jin I K, Choi H S 2016 Electrochim. Acta 201 1

    [71]

    Oh H J, Dao V D, Choi H S 2017 J. Alloy. Compd. 705 610

    [72]

    Peng H, Ma Y, Liu W, Xu X, Fang X, Lian J, Wang X, Li C, Zhou W, Yuan P 2015 J. Energy Chem. 24 416

    [73]

    Wang X, Xu W, Liu N, Yu Z, Li Y, Qiu J 2015 Catal. Today 256 203

    [74]

    Di L, Zhan Z, Zhang X, Qi B, Xu W 2016 Plasma Sci. Technol. 18 544

    [75]

    Di L, Duan D, Zhang X, Qi B, Zhan Z 2016 IEEE Trans. Plasma Sci. 44 2692

    [76]

    Zhang X, Xu W, Duan D, Park D W, Di L 2018 IEEE Trans. Plasma Sci. 46 2776

    [77]

    Zhou C, Chen H, Yan Y, Jia X, Liu C J, Yang Y 2013 Catal. Today 211 104

    [78]

    Xu Z, Qi B, Di L, Zhang X 2014 J. Energy Chem. 23 679

    [79]

    Di L B, Duan D Z, Park D W, Ahn W S, Lee B J, Zhang X L 2017 Top. Catal. 60 925

    [80]

    Fang M, Wang Z Y, Liu C J 2017 Acta Phys. Chim. Sin. 33 435

    [81]

    Xu W, Zhan Z, Di L, Zhang X 2015 Catal. Today 256 148

    [82]

    Deng X Q, Zhu B, Li X S, Liu J L, Zhu X, Zhu A M 2016 Appl. Catal. B 188 48

    [83]

    Hu S, Li F, Fan Z, Gui J 2014 J. Power Sources 250 30

    [84]

    Fu Y, Luo H, Zou X, Wang X 2014 Plasma Sources Sci. Technol. 23 065035

    [85]

    Fu Y, Yang S, Zou X, Luo H, Wang X 2016 Phys. Plasmas 23 093509

    [86]

    Fu Y, Zhang P, Verboncoeur J P 2018 Appl. Phys. Lett. 113 054102

    [87]

    Cole J, Zhang Y, Liu T, Liu C J, Sankaran R M 2017 J. Phys. D: Appl. Phys. 50 304001

    [88]

    Wang Y, Yu F, Zhu M, Ma C, Zhao D, Wang C, Zhou A, Dai B, Ji J, Guo X 2018 J. Mater. Chem. A 6 2011

    [89]

    Wang L, Dou S, Xu J, Liu H K, Wang S, Ma J M, Dou S X 2015 Chem. Commun. 51 11791

  • [1]

    Wang L, Yi Y, Wu C, Guo H, Tu X 2017 Angew. Chem. 129 13867

    [2]

    Sun Q D, Yu B, Liu C J 2012 Plasma Chem. Plasma Process. 32 201

    [3]

    Liu C J, Zhao Y, Li Y, Zhang D S, Chang Z, Bu X H 2014 ACS Sustainable Chem. Eng. 2 3

    [4]

    Wang Q, Song M, Chen C, Wei Y, Zuo X, Wang X 2012 Appl. Phys. Lett. 101 033103

    [5]

    Zhou T, Jang K, Jang B W L 2013 Catal. Today 211 147

    [6]

    Zhu B, Li X S, Liu J L, Liu J B, Zhu X, Zhu A M 2015 Appl. Catal. B 179 69

    [7]

    Wang N, Shen K, Yu X, Qian W, Chu W 2013 Catal. Sci. Technol. 3 2278

    [8]

    Guo F, Xu J Q, Chu W 2015 Catal. Today 256 124

    [9]

    Zhang C, Zhou Y, Shao T, Xie Q, Xu J, Yang W 2014 Appl. Surf. Sci. 311 468

    [10]

    Shao T, Zhang C, Long K, Zhang D, Wang J, Yan P, Zhou Y 2010 Appl. Surf. Sci. 256 3888

    [11]

    Pakhare D, Spivey J 2014 Chem. Soc. Rev. 43 7813

    [12]

    Liu C, Ye J, Jiang J, Pan Y 2011 ChemCatChem 3 529

    [13]

    Zheng Y, Jiao Y, Jaroniec M, Qiao S Z 2015 Angew. Chem. Int. Ed. 54 52

    [14]

    Cheng N, Stambula S, Wang D, Banis M, Liu J, Riese A, Xiao B, Li R, Sham T K, Liu L M, Botton G A, Sun X 2016 Nat. Commun. 7 13638

    [15]

    Qiao B, Liu J, Wang Y G, Lin Q, Liu X, Wang A, Li J, Zhuang T, Liu J 2015 ACS Catal. 5 6249

    [16]

    Saavedra J, Whittaker T, Chen Z, Pursell C J, Rioux R M, Chandler B D 2016 Nat. Chem. 8 584

    [17]

    Huang H, Xu Y, Feng Q, Leung D Y C 2015 Catal. Sci. Technol. 5 2649

    [18]

    Witvrouwen T, Paulussen S, Sels B 2012 Plasma Processes Polym. 9 750

    [19]

    Liu C, Li M, Wang J, Zhou X, Guo Q, Yan J, Li Y 2016 Chin. J. Catal. 37 340

    [20]

    Taghvaei H, Heravi M, Rahimpour M R 2017 Plasma Processes Polym. 14 1600204

    [21]

    Brault P 2016 Plasma Processes Polym. 13 10

    [22]

    Di L, Zhang J, Zhang X 2018 Plasma Processes Polym. 15 1700234

    [23]

    Wang Z, Zhang Y, Neyts E C, Cao X, Zhang X, Jang B W L, Liu C J 2018 ACS Catal. 8 2093

    [24]

    Yang W, Yu Y, Wang L, Yang C, Li H 2015 Nanoscale 7 2877

    [25]

    Yu Y, Yang W, Sun X, Zhu W, Li X Z, Sellmyer D J, Sun S 2014 Nano Lett. 14 2778

    [26]

    Yang W, Lei W, Yu Y, Zhu W, George T A, Li X Z, Sellmyer D J, Sun S 2015 J. Mater. Chem. C 3 7075

    [27]

    Yu Y, Sun K, Tian Y, Li X Z, Kramer M J, Sellmyer D J, Shield J E, Sun S 2013 Nano Lett. 13 4975

    [28]

    Yu Y, Mukherjee P, Tian Y, Li X Z, Shield J E, Sellmyer D J 2014 Nanoscale 6 12050

    [29]

    Qiao B, Wang A, Yang X, Allard L F, Jiang Z, Cui Y, Liu J, Li J, Zhang T 2011 Nat. Chem. 3 634

    [30]

    Abbet S, Sanchez A, Heiz U, Schneider W D, Ferrari A M, Pacchioni G, Rösch N 2000 J. Am. Chem. Soc. 122 3453

    [31]

    Moses-DeBusk M, Yoon M, Allard L F, Mullins D R, Wu Z, Yang X, Veith G, Stocks G M, Narula C K 2013 J. Am. Chem. Soc. 135 12634

    [32]

    Lu J, Aydin C, Browning N D, Gates B C 2012 Angew. Chem. 124 5944

    [33]

    Kistler J D, Chotigkrai N, Xu P, Enderle B, Praserthdam P, Chen C Y, Browning N D, Gates B C 2014 Angew. Chem. Int. Ed. 53 8904

    [34]

    Sun S, Zhang G, Gauquelin N, Chen N, Zhou J, Yang S, Chen W, Meng X, Geng D, Banis M N, Li R, Ye S, Knights S, Botton G A, Sham T K, Sun X 2013 Sci. Rep. 3 1775

    [35]

    Hu P, Huang Z, Amghouz Z, Makkee M, Xu F, Kapteijn F, Dikhtiarenko A, Chen Y, Gu X, Tang X 2014 Angew. Chem. 126 3486

    [36]

    Huang Z, Gu X, Cao Q, Hu P, Hao J, Li J, Tang X 2012 Angew. Chem. 124 4274

    [37]

    Zhang H, Kawashima K, Okumura M, Toshima N 2014 J. Mater. Chem. A 2 13498

    [38]

    Guo X, Fang G, Li G, Ma H, Fan H, Yu L, Ma C, Wu X, Deng D, Wei M, Tan D, Si R, Zhang S, Li S, Sun L, Tang Z, Pan X, Bao X 2014 Science 344 616

    [39]

    Liu P, Zhao Y, Qin R, Mo S, Chen G, Gu L, Chevrier D M, Zhang P, Guo Q, Zang D, Wu B, Fu G, Zheng N 2016 Science 352 797

    [40]

    Zhou Y, Xiang Z, Cao D, Liu C J 2014 Ind. Eng. Chem. Res. 53 1359

    [41]

    Wang W, Wang Z, Yang M, Zhong C J, Liu C J 2016 Nano Energy 25 26

    [42]

    Buitrago-Sierra R, García-Fernández M J, Pastor-Blas M M, Sepúlveda-Escribano A 2013 Green Chem. 15 1981

    [43]

    Wang W, Wang Z, Wang J, Zhong C J, Liu C J 2017 Adv. Sci. 4 1600486

    [44]

    Zhou Y 2014 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese)[周游 2014 博士学位论文 (天津: 天津大学)]

    [45]

    Hong J, Chu W, Chernavskii P A, Khodakov A Y 2010 J. Catal. 273 9

    [46]

    Ratanatawanate C, Macias M, Jang B W L 2005 Ind. Eng. Chem. Res. 44 9868

    [47]

    Li Y, Jang B W L 2011 Appl. Catal. A 392 173

    [48]

    Wu Y W, Chung W C, Chang M B 2015 Int. J. Hydrogen Energy 40 8071

    [49]

    Hua W, Jin L, He X, Liu J, Hu H 2010 Catal. Commun. 11 968

    [50]

    Di L, Li Z, Lee B, Park D W 2017 Int. J. Hydrogen Energy 42 11372

    [51]

    Zhang S, Li X S, Zhu B, Liu J L, Zhu X, Zhu A M, Jang B W L 2015 Catal. Today 256 142

    [52]

    Di L, Xu Z, Wang K, Zhang X 2013 Catal. Today 211 109

    [53]

    Qi B, Di L, Xu W, Zhang X 2014 J. Mater. Chem. A 2 11885

    [54]

    Li Y, Liu G, Lei S, Chu W, Dai X, Yin Y 2008 Plasma Sci. Technol. 10 551

    [55]

    Xu Y, Chen Y, Li J, Zhou J, Song M, Zhang X, Yin Y 2017 Int. J. Hydrogen Energ. 42 13085

    [56]

    Dao V D, Choi Y, Yong K, Larina L L, Shevaleevskiy O, Choi H S 2015 J. Power Sources 274 831

    [57]

    Dao V D, Tran C Q, Ko S H, Choi H S 2013 J. Mater. Chem. A 1 4436

    [58]

    Wang J, Kattel S, Wang Z, Chen J G, Liu C J 2018 ACS Appl. Mater. Inter. 10 21321

    [59]

    Wang W, Anderson C F, Wang Z, Wu W, Cui H, Liu C J 2017 Chem. Sci. 8 3310

    [60]

    Li Z, Meng J, Wang W, Wang Z, Li M, Chen T, Liu C J 2017 Carbohydr. Polym. 161 270

    [61]

    Li Z, Zhang X, Zhang Y, Duan D, Di L 2018 Plasma Sci. Technol. 20 014016

    [62]

    Di L, Zhang X, Lee B, Lu P, Ahn W S, Park D W 2017 Plasma Chem. Plasma Process. 37 1535

    [63]

    Zou J J, Zhang Y P, Liu C J 2006 Langmuir 22 11388

    [64]

    Hu S J, Long H L, Xu Y, Shang S Y, Yin Y X 2011 Chin. J. Catal. 32 340 (in Chinese)[胡诗婧, 龙华丽, 徐艳, 尚书勇, 印永祥 2011 催化学报 32 340]

    [65]

    Sawada Y, Tamaru H, Kogoma M, Kawase M, Hashimoto K 1996 J. Phys. D: Appl. Phys. 29 2539

    [66]

    Sawada Y, Taguchi N, Tachibana K 1999 Jpn. J. Appl. Phys. 38 6506

    [67]

    Di L, Zhang X, Xu Z, Wang K 2014 Plasma Chem. Plasma Process. 34 301

    [68]

    Kim T, Lee D H, Jo S, Pyun S H, Kim K T, Song Y H 2016 ChemCatChem 8 685

    [69]

    Di L, Zhang X, Xu Z 2014 Plasma Sci. Technol. 16 41

    [70]

    Dao V D, Jin I K, Choi H S 2016 Electrochim. Acta 201 1

    [71]

    Oh H J, Dao V D, Choi H S 2017 J. Alloy. Compd. 705 610

    [72]

    Peng H, Ma Y, Liu W, Xu X, Fang X, Lian J, Wang X, Li C, Zhou W, Yuan P 2015 J. Energy Chem. 24 416

    [73]

    Wang X, Xu W, Liu N, Yu Z, Li Y, Qiu J 2015 Catal. Today 256 203

    [74]

    Di L, Zhan Z, Zhang X, Qi B, Xu W 2016 Plasma Sci. Technol. 18 544

    [75]

    Di L, Duan D, Zhang X, Qi B, Zhan Z 2016 IEEE Trans. Plasma Sci. 44 2692

    [76]

    Zhang X, Xu W, Duan D, Park D W, Di L 2018 IEEE Trans. Plasma Sci. 46 2776

    [77]

    Zhou C, Chen H, Yan Y, Jia X, Liu C J, Yang Y 2013 Catal. Today 211 104

    [78]

    Xu Z, Qi B, Di L, Zhang X 2014 J. Energy Chem. 23 679

    [79]

    Di L B, Duan D Z, Park D W, Ahn W S, Lee B J, Zhang X L 2017 Top. Catal. 60 925

    [80]

    Fang M, Wang Z Y, Liu C J 2017 Acta Phys. Chim. Sin. 33 435

    [81]

    Xu W, Zhan Z, Di L, Zhang X 2015 Catal. Today 256 148

    [82]

    Deng X Q, Zhu B, Li X S, Liu J L, Zhu X, Zhu A M 2016 Appl. Catal. B 188 48

    [83]

    Hu S, Li F, Fan Z, Gui J 2014 J. Power Sources 250 30

    [84]

    Fu Y, Luo H, Zou X, Wang X 2014 Plasma Sources Sci. Technol. 23 065035

    [85]

    Fu Y, Yang S, Zou X, Luo H, Wang X 2016 Phys. Plasmas 23 093509

    [86]

    Fu Y, Zhang P, Verboncoeur J P 2018 Appl. Phys. Lett. 113 054102

    [87]

    Cole J, Zhang Y, Liu T, Liu C J, Sankaran R M 2017 J. Phys. D: Appl. Phys. 50 304001

    [88]

    Wang Y, Yu F, Zhu M, Ma C, Zhao D, Wang C, Zhou A, Dai B, Ji J, Guo X 2018 J. Mater. Chem. A 6 2011

    [89]

    Wang L, Dou S, Xu J, Liu H K, Wang S, Ma J M, Dou S X 2015 Chem. Commun. 51 11791

  • [1] 李重阳, 赵宾, 张俊伟. 电子偶素在OMC/SBA-15, OMC@SBA-15及CuO@SBA-15催化剂中的化学猝灭. 物理学报, 2022, 71(6): 067805. doi: 10.7498/aps.71.20211814
    [2] 张凤, 廉森, 王明月, 陈雪, 殷继康, 何磊, 潘华卿, 任俊峰, 陈美娜. 掺杂、应变对析氢反应催化剂NiP2性能的影响. 物理学报, 2021, 70(14): 148802. doi: 10.7498/aps.70.20210298
    [3] 晋中华, 刘伯飞, 梁俊辉, 王宁, 张奇星, 刘彩池, 赵颖, 张晓丹. 室温合成非晶三硫化钼析氢催化剂的性能调制以及其在串联制氢器件中的应用. 物理学报, 2016, 65(11): 118801. doi: 10.7498/aps.65.118801
    [4] 刘芳, 姜振益. 第一性原理研究Eu/N共掺杂锐钛矿TiO2光催化剂的电子和光学性质. 物理学报, 2013, 62(19): 193103. doi: 10.7498/aps.62.193103
    [5] 栾伯晗, 乔增熙, 刘鹏, 赵伟, 鄂鹏, 于达仁. 氢氩等离子体中H原子Balmer 谱线超常展宽研究. 物理学报, 2012, 61(1): 015202. doi: 10.7498/aps.61.015202
    [6] 李艳阳, 杨仕娥, 陈永生, 周建朋, 李新利, 卢景霄. 甚高频电容耦合氢等离子体特性研究. 物理学报, 2012, 61(16): 165203. doi: 10.7498/aps.61.165203
    [7] 叶佳宇, 刘亚丽, 王靖林, 何垚. Zr催化剂对NaAlH4和Na3AlH6可逆储氢性能的影响. 物理学报, 2010, 59(6): 4178-4185. doi: 10.7498/aps.59.4178
    [8] 陈华, 汪力. 金属导线偶合THz表面等离子体波. 物理学报, 2009, 58(7): 4605-4609. doi: 10.7498/aps.58.4605
    [9] 王叶安, 秦福文, 吴东江, 吴爱民, 徐 茵, 顾 彪. 基于电子回旋共振-等离子体增强金属有机物化学气相沉积技术生长GaMnN稀磁半导体的研究. 物理学报, 2008, 57(1): 508-513. doi: 10.7498/aps.57.508
    [10] 张宏俊, 王 栋, 陈志权, 王少阶, 徐友明, 罗锡辉. MoO3/Al2O3催化剂中Mo分散的正电子研究. 物理学报, 2008, 57(11): 7333-7337. doi: 10.7498/aps.57.7333
    [11] 裘 亮, 孟月东, 任兆杏, 钟少锋. 一种新型微空阴极结构的大气压射频冷等离子体源. 物理学报, 2006, 55(11): 5872-5877. doi: 10.7498/aps.55.5872
    [12] 李振华, 王琴妹, 王 淼. 金属铈催化剂对单壁纳米碳管生长和结构的影响. 物理学报, 2005, 54(5): 2158-2161. doi: 10.7498/aps.54.2158
    [13] 张永辉, 江金生, 常安碧. 空心阴极等离子体电子枪研究. 物理学报, 2003, 52(7): 1676-1681. doi: 10.7498/aps.52.1676
    [14] 刘明海, 胡希伟, 邬钦崇, 俞国扬. 电子回旋共振等离子体源的数值模拟. 物理学报, 2000, 49(3): 497-501. doi: 10.7498/aps.49.497
    [15] 陈雅深. 双Maxwell分布电子驱动的等离子体. 物理学报, 1986, 35(6): 762-770. doi: 10.7498/aps.35.762
    [16] 胡永军, 林彰达, 王昌衡, 谢侃. 助催化剂Co与单晶MoS2边缘面区域及离子溅射解理面相互作用. 物理学报, 1986, 35(11): 1447-1456. doi: 10.7498/aps.35.1447
    [17] 康寿万, 蔡诗东. 磁化等离子体中逃逸电子的临界速度. 物理学报, 1980, 29(3): 311-319. doi: 10.7498/aps.29.311
    [18] 姚鑫兹, 祖钦信, 徐瑶, 高鹏, 何凤杰, 李宝环. 用激光散射法测量等离子体的电子温度和θ-收缩等离子体能量损失的研究. 物理学报, 1979, 28(6): 824-832. doi: 10.7498/aps.28.824
    [19] 洪明苑, 叶茂福, 孙湘. 感应磁场压缩下氢等离子体中巴耳末系谱线的斯塔克加宽. 物理学报, 1965, 21(9): 1606-1618. doi: 10.7498/aps.21.1606
    [20] 裘祖文, 朱育芬, 唐学明, 熊福金, 孔宪印. π-(C5H5)2TiCl2·AlR3系可溶性催化剂的电子自旋共振波谱. 物理学报, 1961, 17(12): 600-607. doi: 10.7498/aps.17.600
计量
  • 文章访问数:  8110
  • PDF下载量:  218
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-30
  • 修回日期:  2018-09-05
  • 刊出日期:  2018-11-05

/

返回文章
返回