搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米结构超疏水表面冷凝现象的三维格子玻尔兹曼方法模拟

胡梦丹 张庆宇 孙东科 朱鸣芳

引用本文:
Citation:

纳米结构超疏水表面冷凝现象的三维格子玻尔兹曼方法模拟

胡梦丹, 张庆宇, 孙东科, 朱鸣芳

Three-dimensional lattice Boltzmann modeling of droplet condensation on superhydrophobic nanostructured surfaces

Hu Meng-Dan, Zhang Qing-Yu, Sun Dong-Ke, Zhu Ming-Fang
PDF
HTML
导出引用
  • 采用三维多相流格子玻尔兹曼方法(lattice Boltzmann method, LBM), 对纳米结构超疏水表面液滴的冷凝行为进行模拟研究. 通过Laplace定律和光滑表面的本征接触角理论对三维LBM模型进行定量验证. 模拟分析了超疏水表面纳米阵列的几何尺寸和润湿性的局部不均匀性对冷凝液滴形核位置和最终润湿状态的影响规律. 结果表明, 较高的纳米阵列使液滴在纳米结构间隙的上部侧面和底部优先形核长大, 通过采用上下不均匀的间隙可避免液滴在底部形核长大, 而在上部侧面形核的冷凝液滴在生长过程中向上运动, 其润湿状态由Wenzel态转变为Cassie态; 较低的纳米阵列使液滴在纳米结构底部优先形核长大, 液滴的最终润湿状态为Wenzel态; 润湿性不均匀的纳米结构表面使液滴在阵列顶端亲水位置处优先形核长大, 成为Cassie态. 冷凝液滴在不同几何尺寸的纳米结构表面上的最终润湿状态的模拟结果与文献报道的实验结果符合良好. 通过模拟还发现, 冷凝液滴在生长过程中的运动行为与液滴统计平均作用力的变化有关. 本文的LBM模拟再现了三维空间中液滴的形核、长大和润湿状态转变等物理现象.
    Superhydrophobic surfaces resulting from nanoarrays have good performance in anti-condensation. However, the study of droplet nucleation during water vapor condensation is a challenge because of the limitation of observation on a nanoscale, and therefore the fundamental understanding of the influence of geometrical parameters of nanoarrays on the condensation behavior is still less clear. In this work a three-dimensional (3D) multiphase lattice Boltzmann (LB) model is employed to simulate the phenomenon of droplet condensation on the superhydrophobic nanostructured surface. The model validation is carried out through the comparison of the simulations with the results from the Laplace's law and the intrinsic contact angle theory. The LB simulations accord well with the results from Laplace's law. The relative deviation between the simulated intrinsic contact angle and the theoretical value is less than 0.14%, demonstrating the validity of the LB model. Then, the 3D LB model is used to simulate the different preferential nucleation positions and final wetting states of condensate droplets by changing the geometrical parameters, including interpost space, post height and post width, and local wettability of the nanoarrays on superhydrophobic surfaces. It is found that for the nanostructured surfaces patterned with tall posts, the droplets nucleate in the upside interpost space and at the bottom of nanostructures simultaneously. By designing wider and thinner interpost spaces at the downside and upside of the tall nanostructures, respectively, the phenomenon of droplet nucleation at the bottom can be avoided. The simulation results show that the condensate droplets nucleated in the upside interpost space of tall nanostructures migrate upwards during growth, producing a Wenzel-to-Cassie wetting state transition. On the other hand, the condensate droplets nucleated at the bottom of nanostructured surface patterned with short posts produce the Wenzel state. However, by setting non-uniform hydrophilic and hydrophobic regions on the top of the short nanostructures, the condensate droplets are found to nucleate on the hydrophilic top and generate a Cassie state. The simulated final wetting states of condensate droplets on the nanostructures, having various geometrical parameters, compare reasonably well with the experimental observations reported in the literature. It is demonstrated that the migration of condensate droplets is correlated with the evolution of the statistical average force. If the direction of the statistical average force acting on the droplet is upward, the condensate droplets nucleated in the upside interpost space move upward during growth. The 3D LB simulations provide an insight into the physical mechanism of droplet nucleation, growth and wetting state transitions on superhydrophobic nanostructured surfaces.
      通信作者: 朱鸣芳, zhumf@seu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51371051, 51771118)和江苏省先进金属材料高技术研究重点实验室(批准号: BM2007204)资助的课题.
      Corresponding author: Zhu Ming-Fang, zhumf@seu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51371051, 51771118) and the Key Laboratory of Advanced Metallic Materials of Jiangsu Province, China (Grant No. BM2007204).
    [1]

    Zhang X, Shi F, Niu J, Jiang Y G, Wang Z Q 2008 J. Mater. Chem. 18 621Google Scholar

    [2]

    Park K C, Choi H J, Chang C H, Cohen R E, Mckinley G H, Barbastathis G 2012 ACS Nano 6 3789Google Scholar

    [3]

    Guo P, Zheng Y M, Wen M X, Song C, Lin Y C, Jiang L 2012 Adv. Mater. 24 2642Google Scholar

    [4]

    Zhang Y F, Yu X Q, Wu H, Wu J 2012 Appl. Surf. Sci. 258 8253Google Scholar

    [5]

    柯清平, 李广录, 郝天歌, 何涛, 李雪梅 2010 化学进展 22 284

    Ke Q P, Li G L, Hao T G, He T, Li X M 2010 Prog. Chem. 22 284

    [6]

    郗金明 2008 博士学位论文 (北京: 中国科学院研究生院)

    Xi J M 2008 Ph. D. Dissertation (Beijing: Graduate University of Chinese Academy of Sciences) (in Chinese)

    [7]

    刘俊吉, 周亚平, 李松林 2009 物理化学(下卷) (北京: 高等教育出版社) 第487页

    Liu J J, Zhou Y P, Li S L 2009 Physical Chemistry (Vol. 2) (Beijing: Higher Education Press) p487 (in Chinese)

    [8]

    He M, Wang J J, Li H L, Song Y L 2011 Soft Matter 7 3993Google Scholar

    [9]

    Enright R, Miljkovic N, Dou N, Nam Y, Wang E N 2013 J. Heat Transfer 135 091304Google Scholar

    [10]

    Zhang S N, Huang J Y, Tang Y X, Li S H, Ge M Z, Chen Z, Zhang K Q, Lai Y K 2017 Small 13 1600687Google Scholar

    [11]

    Aili A, Ge Q Y, Zhang T J 2017 J. Heat Transfer 139 112401Google Scholar

    [12]

    Wenzel R N 1936 J. Ind. Eng. Chem. 28 988Google Scholar

    [13]

    Cassie A B D, Baxter S 1944 Trans. Faraday Soc. 40 546Google Scholar

    [14]

    Narhe R D, Beysens D A 2004 Phys. Rev. Lett. 93 076103Google Scholar

    [15]

    Narhe R D, Beysens D A 2006 Europhys. Lett. 75 98Google Scholar

    [16]

    Rykaczewski K 2012 Langmuir 28 7720Google Scholar

    [17]

    Lau K K S, Bico J, Teo K B K, Chhowalla M, Amaratunga G A J, Milne W I, McKinley G H, Gleason K K 2003 Nano Lett. 3 1701Google Scholar

    [18]

    郭照立, 郑楚光 2009 格子Boltzmann方法的原理和应用 (第一版) (北京: 科学出版社) 第9, 10页

    Guo Z L, Zheng C G 2009 Theory and Applications of Lattice Boltzmann Method (Beijing: Science Press) pp9, 10 (in Chinese)

    [19]

    张博 2016 博士学位论文 (北京: 北京化工大学)

    Zhang B 2016 Ph. D. Dissertation (Beijing: Beijing University of Chemical Technology) (in Chinese)

    [20]

    Kusumaatmaja H, Leopoldes J, Dupuis A, Yeomans J M 2006 Europhys. Lett. 73 740Google Scholar

    [21]

    Kusumaatmaja H, Yeomans J M 2007 Langmuir 23 6019Google Scholar

    [22]

    Cui J, Li W Z, Lam W H 2011 Comput. Math. Appl. 61 3678Google Scholar

    [23]

    Liu X L, Cheng P, Quan X J 2014 Int. J. Heat Mass Transfer 73 195Google Scholar

    [24]

    Zhang Q Y, Sun D K, Zhang Y F, Zhu M F 2014 Langmuir 30 12559Google Scholar

    [25]

    Zhang Q Y, Sun D K, Zhang Y F, Zhu M F 2016 Chin. Phys. B 25 066401Google Scholar

    [26]

    Shan X W, Chen H D 1993 Phys. Rev. E 47 1815Google Scholar

    [27]

    何雅玲, 王勇, 李庆 2009 格子Boltzmann方法的理论及应用 (第一版) (北京: 科学出版社) 第49−52页

    He Y L, Wang Y, Li Q 2009 Lattice Boltzmann Method: Theory and Applications (Beijing: Science Press) pp49−52 (in Chinese)

    [28]

    吴伟 2012 硕士学位论文(南京: 东南大学)

    Wu W 2012 M. S. Thesis (Nanjing: Southeast University) (in Chinese)

    [29]

    Sukop M C, Jr Thorne D T 2005 Lattice Boltzmann Modeling-An Introduction for Geoscientists and Engineers (2nd Ed.) (New York: Springer) p89

    [30]

    Chen C H, Cai Q, Tsai C, Chen C L, Xiong G, Yu Y, Ren Z 2007 Appl. Phys. Lett. 90 173108Google Scholar

  • 图 1  D3Q19 LBM模型离散速度示意图[27]

    Fig. 1.  Schematic sketch of LBM discrete velocities in the D3Q19 scheme[27].

    图 2  模拟的液滴内外压力差与液滴曲率的关系(符号, 模拟值; 直线, 线性拟合)

    Fig. 2.  Simulated pressure difference between inside and outside of a spherical droplet as a function of droplet curvature (symbols, simulated data; lines, linear fitting).

    图 3  Gc = −6.5时模拟的液滴本征接触角随流-固作用系数的变化

    Fig. 3.  Simulated intrinsic contact angle as a function of the fluid-solid interaction strength at Gc = −6.5.

    图 4  液滴冷凝的三维模拟区域示意图

    Fig. 4.  Schematic of the three-dimensional domain for the simulation of droplet condensation.

    图 5  模拟的液滴在纳米阵列上部侧面和底部同时形核、生长及合并演化过程

    Fig. 5.  Simulated evolution of droplet nucleation, growth, and coalescence for the droplets that nucleate simultaneously in the upside space and the bottom corners between the posts of nanoarrays.

    图 6  液滴在纳米阵列上部侧面形核、生长及合并演化过程的LBM模拟结果和实验结果[17]对比

    Fig. 6.  Comparison of LBM simulation and experiment[17] regarding the evolution of droplet nucleation, growth, and coalescence for the droplets that nucleate in the upside space between the posts of nanoarrays.

    图 7  对应于图6中间隙上部的液相在润湿状态转变阶段所受的统计平均作用力随时间的变化

    Fig. 7.  Statistical average force of the condensate liquid in the upside space between the posts of nanoarrays in Fig. 6 during wetting state transition as a function of time.

    图 8  液滴在纳米阵列底部形核、生长及合并演化过程的LBM模拟结果和实验结果[30]对比

    Fig. 8.  Comparison of LBM simulation and experiment[30] regarding the evolution of droplet nucleation, growth, and coalescence for the droplets that nucleate in the bottom corners between the posts of nanoarrays.

    图 9  模拟的液滴在具有不均匀润湿性的纳米阵列顶端形核、生长及合并演化过程

    Fig. 9.  Simulated evolution of droplet nucleation, growth, and coalescence on the nanoarrays non-uniformly patterned with hydrophilic and hydrophobic regions on the top of nanoarrays.

    表 1  Gc = −6.5时液滴本征接触角设定值与模拟值对比

    Table 1.  Comparison of intrinsic contact angles between the targeted data and the simulated results (Gc = −6.5).

    Gads$\theta_{\rm c0} $$\theta_{\rm c1} $$\operatorname{Re} {\rm{lative \;error = }}\dfrac{{{\theta _{{\rm{c}}1}} - {\theta _{{\rm{c0}}}}}}{{{\theta _{{\rm{c}}0}}}}$/%
    −5.680
    −3.3390°90.13°0.14
    −0.39180°180°0
    下载: 导出CSV
  • [1]

    Zhang X, Shi F, Niu J, Jiang Y G, Wang Z Q 2008 J. Mater. Chem. 18 621Google Scholar

    [2]

    Park K C, Choi H J, Chang C H, Cohen R E, Mckinley G H, Barbastathis G 2012 ACS Nano 6 3789Google Scholar

    [3]

    Guo P, Zheng Y M, Wen M X, Song C, Lin Y C, Jiang L 2012 Adv. Mater. 24 2642Google Scholar

    [4]

    Zhang Y F, Yu X Q, Wu H, Wu J 2012 Appl. Surf. Sci. 258 8253Google Scholar

    [5]

    柯清平, 李广录, 郝天歌, 何涛, 李雪梅 2010 化学进展 22 284

    Ke Q P, Li G L, Hao T G, He T, Li X M 2010 Prog. Chem. 22 284

    [6]

    郗金明 2008 博士学位论文 (北京: 中国科学院研究生院)

    Xi J M 2008 Ph. D. Dissertation (Beijing: Graduate University of Chinese Academy of Sciences) (in Chinese)

    [7]

    刘俊吉, 周亚平, 李松林 2009 物理化学(下卷) (北京: 高等教育出版社) 第487页

    Liu J J, Zhou Y P, Li S L 2009 Physical Chemistry (Vol. 2) (Beijing: Higher Education Press) p487 (in Chinese)

    [8]

    He M, Wang J J, Li H L, Song Y L 2011 Soft Matter 7 3993Google Scholar

    [9]

    Enright R, Miljkovic N, Dou N, Nam Y, Wang E N 2013 J. Heat Transfer 135 091304Google Scholar

    [10]

    Zhang S N, Huang J Y, Tang Y X, Li S H, Ge M Z, Chen Z, Zhang K Q, Lai Y K 2017 Small 13 1600687Google Scholar

    [11]

    Aili A, Ge Q Y, Zhang T J 2017 J. Heat Transfer 139 112401Google Scholar

    [12]

    Wenzel R N 1936 J. Ind. Eng. Chem. 28 988Google Scholar

    [13]

    Cassie A B D, Baxter S 1944 Trans. Faraday Soc. 40 546Google Scholar

    [14]

    Narhe R D, Beysens D A 2004 Phys. Rev. Lett. 93 076103Google Scholar

    [15]

    Narhe R D, Beysens D A 2006 Europhys. Lett. 75 98Google Scholar

    [16]

    Rykaczewski K 2012 Langmuir 28 7720Google Scholar

    [17]

    Lau K K S, Bico J, Teo K B K, Chhowalla M, Amaratunga G A J, Milne W I, McKinley G H, Gleason K K 2003 Nano Lett. 3 1701Google Scholar

    [18]

    郭照立, 郑楚光 2009 格子Boltzmann方法的原理和应用 (第一版) (北京: 科学出版社) 第9, 10页

    Guo Z L, Zheng C G 2009 Theory and Applications of Lattice Boltzmann Method (Beijing: Science Press) pp9, 10 (in Chinese)

    [19]

    张博 2016 博士学位论文 (北京: 北京化工大学)

    Zhang B 2016 Ph. D. Dissertation (Beijing: Beijing University of Chemical Technology) (in Chinese)

    [20]

    Kusumaatmaja H, Leopoldes J, Dupuis A, Yeomans J M 2006 Europhys. Lett. 73 740Google Scholar

    [21]

    Kusumaatmaja H, Yeomans J M 2007 Langmuir 23 6019Google Scholar

    [22]

    Cui J, Li W Z, Lam W H 2011 Comput. Math. Appl. 61 3678Google Scholar

    [23]

    Liu X L, Cheng P, Quan X J 2014 Int. J. Heat Mass Transfer 73 195Google Scholar

    [24]

    Zhang Q Y, Sun D K, Zhang Y F, Zhu M F 2014 Langmuir 30 12559Google Scholar

    [25]

    Zhang Q Y, Sun D K, Zhang Y F, Zhu M F 2016 Chin. Phys. B 25 066401Google Scholar

    [26]

    Shan X W, Chen H D 1993 Phys. Rev. E 47 1815Google Scholar

    [27]

    何雅玲, 王勇, 李庆 2009 格子Boltzmann方法的理论及应用 (第一版) (北京: 科学出版社) 第49−52页

    He Y L, Wang Y, Li Q 2009 Lattice Boltzmann Method: Theory and Applications (Beijing: Science Press) pp49−52 (in Chinese)

    [28]

    吴伟 2012 硕士学位论文(南京: 东南大学)

    Wu W 2012 M. S. Thesis (Nanjing: Southeast University) (in Chinese)

    [29]

    Sukop M C, Jr Thorne D T 2005 Lattice Boltzmann Modeling-An Introduction for Geoscientists and Engineers (2nd Ed.) (New York: Springer) p89

    [30]

    Chen C H, Cai Q, Tsai C, Chen C L, Xiong G, Yu Y, Ren Z 2007 Appl. Phys. Lett. 90 173108Google Scholar

  • [1] 隋鹏翔. 颗粒尺寸对纳米流体自然对流模式影响的格子Boltzmann方法模拟. 物理学报, 2024, 73(23): 234702. doi: 10.7498/aps.73.20241332
    [2] 冯晶森, 闵敬春. 直通道内两相流动的格子玻尔兹曼方法模拟. 物理学报, 2023, 72(8): 084701. doi: 10.7498/aps.72.20222421
    [3] 韩乾翰, 张亚容, 赖玉玲, 徐利云, 郭颖, 张菁, 俞建勇, 石建军. 等离子体制备自修复超疏水涂层纤维. 物理学报, 2021, 70(9): 095212. doi: 10.7498/aps.70.20210585
    [4] 范增华, 荣伟彬, 刘紫潇, 高军, 田业冰. 单指式微执行器端面冷凝液滴的迁移特性. 物理学报, 2020, 69(18): 186801. doi: 10.7498/aps.69.20200463
    [5] 张贝豪, 郑林. 倾斜多孔介质方腔内纳米流体自然对流的格子Boltzmann方法模拟. 物理学报, 2020, 69(16): 164401. doi: 10.7498/aps.69.20200308
    [6] 冯涛, Horst Hahn, Herbert Gleiter. 纳米结构非晶合金材料研究进展. 物理学报, 2017, 66(17): 176110. doi: 10.7498/aps.66.176110
    [7] 冯黛丽, 冯妍卉, 石珺. 介孔复合材料声子输运的格子玻尔兹曼模拟. 物理学报, 2016, 65(24): 244401. doi: 10.7498/aps.65.244401
    [8] 华钰超, 曹炳阳. 多约束纳米结构的声子热导率模型研究. 物理学报, 2015, 64(14): 146501. doi: 10.7498/aps.64.146501
    [9] 刘天庆, 孙玮, 李香琴, 孙相彧, 艾宏儒. 纳米结构表面上部分润湿液滴合并诱导弹跳的理论研究. 物理学报, 2014, 63(8): 086801. doi: 10.7498/aps.63.086801
    [10] 王奔, 念敬妍, 铁璐, 张亚斌, 郭志光. 稳定超疏水性表面的理论进展. 物理学报, 2013, 62(14): 146801. doi: 10.7498/aps.62.146801
    [11] 陈海楠, 孙东科, 戴挺, 朱鸣芳. 凝固前沿和气泡相互作用的大密度比格子玻尔兹曼方法模拟. 物理学报, 2013, 62(12): 120502. doi: 10.7498/aps.62.120502
    [12] 孙东科, 项楠, 陈科, 倪中华. 格子玻尔兹曼方法模拟弯流道中粒子的惯性迁移行为. 物理学报, 2013, 62(2): 024703. doi: 10.7498/aps.62.024703
    [13] 张帆, 朱航天, 骆军, 梁敬魁, 饶光辉, 刘泉林. Sb2Te3 纳米结构的制备与表征. 物理学报, 2010, 59(10): 7232-7238. doi: 10.7498/aps.59.7232
    [14] 周丰茂, 孙东科, 朱鸣芳. 偏晶合金液-液相分离的格子玻尔兹曼方法模拟. 物理学报, 2010, 59(5): 3394-3401. doi: 10.7498/aps.59.3394
    [15] 程笃庆, 关庆丰, 朱健, 邱东华, 程秀围, 王雪涛. 强流脉冲电子束诱发纯镍表层纳米结构的形成机制. 物理学报, 2009, 58(10): 7300-7306. doi: 10.7498/aps.58.7300
    [16] 武祥, 蔡伟, 曲凤玉. ZnO一维纳米结构的形貌调控与亲疏水性研究. 物理学报, 2009, 58(11): 8044-8049. doi: 10.7498/aps.58.8044
    [17] 公茂刚, 许小亮, 曹自立, 刘远越, 朱海明. 两步法制备超疏水性ZnO纳米棒薄膜. 物理学报, 2009, 58(3): 1885-1889. doi: 10.7498/aps.58.1885
    [18] 李爱华, 张凯旺, 孟利军, 李 俊, 刘文亮, 钟建新. 基于graphene条带的硅纳米结构. 物理学报, 2008, 57(7): 4356-4363. doi: 10.7498/aps.57.4356
    [19] 顾春元, 狄勤丰, 施利毅, 吴 非, 王文昌, 余祖斌. 纳米粒子构建表面的超疏水性能实验研究. 物理学报, 2008, 57(5): 3071-3076. doi: 10.7498/aps.57.3071
    [20] 杨红官, 施毅, 闾锦, 濮林, 张荣, 郑有. 锗/硅异质纳米结构中空穴存储特性研究. 物理学报, 2004, 53(4): 1211-1216. doi: 10.7498/aps.53.1211
计量
  • 文章访问数:  10617
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-06
  • 修回日期:  2018-11-13
  • 上网日期:  2019-02-01
  • 刊出日期:  2019-02-05

/

返回文章
返回