搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单光子调制频谱用于量子点荧光寿命动力学的研究

张强强 胡建勇 景明勇 李斌 秦成兵 李耀 肖连团 贾锁堂

引用本文:
Citation:

单光子调制频谱用于量子点荧光寿命动力学的研究

张强强, 胡建勇, 景明勇, 李斌, 秦成兵, 李耀, 肖连团, 贾锁堂

Research on fluorescence lifetime dynamics of quantum dot by single photons modulation spectrum

Zhang Qiang-Qiang, Hu Jian-Yong, Jing Ming-Yong, Li Bin, Qin Cheng-Bing, Li Yao, Xiao Lian-Tuan, Jia Suo-Tang
PDF
导出引用
  • 本文开展了基于单光子调制频谱测量量子点荧光寿命动力学特性的研究.在脉冲激光激发下,对探测到的量子点单光子荧光信号进行频谱分析以获得荧光调制频谱,研究发现特征频谱信号幅值与荧光寿命之间存在确定的非线性对应关系.这种单光子调制频谱方法能有效消除背景噪声和单光子探测器暗计数的影响,用于分析量子点荧光寿命动力学特性时在准确度以及时间分辨率方面都较目前普遍采用的荧光衰减曲线寿命拟合方法呈现出明显优势:当涨落误差为5%时,寿命测量准确度提高了一个数量级;当涨落误差和偏离误差均为5%时,对动力学测量效率以及时间分辨率提高了四倍以上.因此单光子调制频谱可以作为获取量子点在短时间尺度内激发态动力学信息的一种有效技术手段.
    Fluorescence lifetime is an important characteristic parameter of quantum dot, which plays an important role in studying the optical properties of quantum dot. As a common method to obtain fluorescence lifetime, fluorescence decay curve fitting has been broadly accepted. The least squares fitting to the fluorescence decay curve is performed by using the exponential decay function to obtain fluorescence lifetime with taking the instrument response function into account. However, since the fluorescence decay curve inevitably involves noise photons such as dark counts and stray photons, there is a certain error in the fluorescence lifetime obtained by the method. In order to reduce the error and improve the accuracy of the results, enough photons are required. Nevertheless, too many photons will result in low efficiency of lifetime analysis and temporal resolution, and therefore this method can hardly extract dynamic information on a smaller temporal scale. In this paper, we propose a new method of obtaining the fluorescence lifetime of quantum dot, namely the single photons modulation spectrum. The basic idea is based on the relationship between the fluorescence lifetime and the signal amplitude of pulse repetition frequency in a single dynamic process. The experimental results show that the fluctuation errors and deviation errors of lifetime obtained by our method are significantly lower than those of the previous method when the same number of photons is used. Therefore, high-accuracy fluorescence lifetime can be obtained. When the fluctuation error is 5%, the accuracy is increased by more than one order of magnitude. And to obtain the fluorescence lifetime of the same error level, the number of photons required for our method is much smaller than that of the previous one, which indicates that our method can effectively suppress the disturbance of noise photons and enables the lifetime measurement with high efficiency and temporal resolution. When the fluctuation error and deviation error are both 5%, the efficiency and temporal resolution are increased by more than four times. Finally, real-time lifetime trajectory corresponding to the photoluminescence intensity time trajectory is obtained by our method, where rich dynamic information can be obtained on a sub-second temporal scale. The method of obtaining fluorescence lifetime with powerful anti-noise capability, high efficiency and temporal resolution proposed in this paper can play an important role in studying the fluorescence dynamics of single quantum systems.
    [1]

    Pietryga J M, Park Y S, Lim J, Fidler A F, Bae W K, Brovelli S, Kilmov V I 2016 Chem. Rev. 116 10513

    [2]

    Semonin O E, Luther J M, Choi S, Chen H Y, Gao J, Nozik A J, Beard M C 2011 Science 334 1530

    [3]

    Kim M R, Ma D L 2015 J. Phys. Chem. Lett. 6 85

    [4]

    Bae W K, Park Y S, Lim J, Lee D G, Padilha L A, McDaniel H, Robel I, Lee C H, Pietryga J M, Klimov V I 2013 Nat. Commun. 4 2661

    [5]

    Huang Q Q, Pan J Y, Zhang Y N, Chen J, Tao Z, He C, Zhou K F, Tu Y, Lei W 2016 Opt. Express 24 25955

    [6]

    Sukhovatkin V, Hinds S, Brzozowski L, Sargent E H 2009 Science 324 1542

    [7]

    Fisher B, Caruge J M, Zehnder D, Bawendi M 2005 Phys. Rev. Lett. 94 087403

    [8]

    Klimov V I, Mikhailovsky A A, McBranch D W, Leatherdale C A, Bawendi M G 2000 Science 287 1011

    [9]

    Klimov V I, Mikhailovsky A A, Xu S, Malko A, Hollingsworth J A, Leatherdale C A, Eisler H J, Bawendi M G 2000 Science 290 314

    [10]

    Chen Q G, Zhou T Y, He C Y, Jiang Y Q, Chen X 2011 Anal. Methods 3 1471

    [11]

    Fan Y Y, Liu H L, Han R C, Huang L, Shi H, Sha Y L, Jiang Y Q 2015 Sci. Rep. 5 9908

    [12]

    Welsher K, Yang H 2014 Nat. Nanotechnol. 9 198

    [13]

    Hu F R, Lv B H, Yin C Y, Zhang C F, Wang X Y, Lounis B, Xiao M 2016 Phys. Rev. Lett. 116 106404

    [14]

    Yuan G C, Gómez D E, Kirkwood N, Boldt K, Mulvaney P 2018 ACS Nano 12 3397

    [15]

    Fisher B R, Eisler H J, Stott N E, Bawendi M G 2004 J. Phys. Chem. B 108 143

    [16]

    Schlegel G, Bohnenberger J, Potapova I, Mews A 2002 Phys. Rev. Lett. 88 137401

    [17]

    Schmidt R, Krasselt C, Gohler C, von Borczyskowski C 2014 ACS Nano 8 3506

    [18]

    Zhang K, Chang H Y, Fu A H, Alivisatos A P, Yang H 2006 Nano Lett. 6 843

    [19]

    Htoon H, Hollingsworth J A, Dickerson R, Klimov V I 2003 Phys. Rev. Lett. 91 227401

    [20]

    Rabouw F T, Vaxenburg R, Bakulin A A, van Dijk Moes R J A, Bakker H J, Rodina A, Lifshitz E, Efros A L, Koenderink A F, Vanmaekelbergh D 2015 ACS Nano 9 10366

    [21]

    Li Z J, Zhang G F, Li B, Chen R Y, Qin C B, Gao Y, Xiao L T, Jia S T 2017 Appl. Phys. Lett. 111 153106

    [22]

    Yang C G, Zhang G F, Feng L H, Li B, Li Z J, Chen R Y, Qin C B, Gao Y, Xiao L T, Jia S T 2018 Opt. Express 26 11889

    [23]

    Zang H D, Routh P K, Huang Y, Chen J S, Sutter E, Sutter P, Cotlet M 2016 ACS Nano 10 4790

    [24]

    Rusimova K R, Purkiss R M, Howes R, Lee F, Crampin S, Sloan P A 2018 Science 361 1012

    [25]

    Li B, Zhang G F, Yang C G, Li Z J, Chen R Y, Qin C B, Gao Y, Huang H, Xiao L T, Jia S T 2018 Opt. Express 26 4674

    [26]

    Hu J Y, Yu B, Jing M Y, Xiao L T, Jia S T, Qin G Q, Long G L 2016 Light-Sci. Appl. 5 e16144

    [27]

    Hu J Y, Liu Y, Liu L L, Yu B, Zhang G F, Xiao L T, Jia S T 2015 Photon. Res. 3 24

    [28]

    Mobli M, Hoch J C 2014 Prog. Nucl. Magn. Reson. Spectrosc. 83 21

    [29]

    He W J, Qin C B, Qiao Z X, Zhang G F, Xiao L T, Jia S T 2016 Carbon 109 264

  • [1]

    Pietryga J M, Park Y S, Lim J, Fidler A F, Bae W K, Brovelli S, Kilmov V I 2016 Chem. Rev. 116 10513

    [2]

    Semonin O E, Luther J M, Choi S, Chen H Y, Gao J, Nozik A J, Beard M C 2011 Science 334 1530

    [3]

    Kim M R, Ma D L 2015 J. Phys. Chem. Lett. 6 85

    [4]

    Bae W K, Park Y S, Lim J, Lee D G, Padilha L A, McDaniel H, Robel I, Lee C H, Pietryga J M, Klimov V I 2013 Nat. Commun. 4 2661

    [5]

    Huang Q Q, Pan J Y, Zhang Y N, Chen J, Tao Z, He C, Zhou K F, Tu Y, Lei W 2016 Opt. Express 24 25955

    [6]

    Sukhovatkin V, Hinds S, Brzozowski L, Sargent E H 2009 Science 324 1542

    [7]

    Fisher B, Caruge J M, Zehnder D, Bawendi M 2005 Phys. Rev. Lett. 94 087403

    [8]

    Klimov V I, Mikhailovsky A A, McBranch D W, Leatherdale C A, Bawendi M G 2000 Science 287 1011

    [9]

    Klimov V I, Mikhailovsky A A, Xu S, Malko A, Hollingsworth J A, Leatherdale C A, Eisler H J, Bawendi M G 2000 Science 290 314

    [10]

    Chen Q G, Zhou T Y, He C Y, Jiang Y Q, Chen X 2011 Anal. Methods 3 1471

    [11]

    Fan Y Y, Liu H L, Han R C, Huang L, Shi H, Sha Y L, Jiang Y Q 2015 Sci. Rep. 5 9908

    [12]

    Welsher K, Yang H 2014 Nat. Nanotechnol. 9 198

    [13]

    Hu F R, Lv B H, Yin C Y, Zhang C F, Wang X Y, Lounis B, Xiao M 2016 Phys. Rev. Lett. 116 106404

    [14]

    Yuan G C, Gómez D E, Kirkwood N, Boldt K, Mulvaney P 2018 ACS Nano 12 3397

    [15]

    Fisher B R, Eisler H J, Stott N E, Bawendi M G 2004 J. Phys. Chem. B 108 143

    [16]

    Schlegel G, Bohnenberger J, Potapova I, Mews A 2002 Phys. Rev. Lett. 88 137401

    [17]

    Schmidt R, Krasselt C, Gohler C, von Borczyskowski C 2014 ACS Nano 8 3506

    [18]

    Zhang K, Chang H Y, Fu A H, Alivisatos A P, Yang H 2006 Nano Lett. 6 843

    [19]

    Htoon H, Hollingsworth J A, Dickerson R, Klimov V I 2003 Phys. Rev. Lett. 91 227401

    [20]

    Rabouw F T, Vaxenburg R, Bakulin A A, van Dijk Moes R J A, Bakker H J, Rodina A, Lifshitz E, Efros A L, Koenderink A F, Vanmaekelbergh D 2015 ACS Nano 9 10366

    [21]

    Li Z J, Zhang G F, Li B, Chen R Y, Qin C B, Gao Y, Xiao L T, Jia S T 2017 Appl. Phys. Lett. 111 153106

    [22]

    Yang C G, Zhang G F, Feng L H, Li B, Li Z J, Chen R Y, Qin C B, Gao Y, Xiao L T, Jia S T 2018 Opt. Express 26 11889

    [23]

    Zang H D, Routh P K, Huang Y, Chen J S, Sutter E, Sutter P, Cotlet M 2016 ACS Nano 10 4790

    [24]

    Rusimova K R, Purkiss R M, Howes R, Lee F, Crampin S, Sloan P A 2018 Science 361 1012

    [25]

    Li B, Zhang G F, Yang C G, Li Z J, Chen R Y, Qin C B, Gao Y, Huang H, Xiao L T, Jia S T 2018 Opt. Express 26 4674

    [26]

    Hu J Y, Yu B, Jing M Y, Xiao L T, Jia S T, Qin G Q, Long G L 2016 Light-Sci. Appl. 5 e16144

    [27]

    Hu J Y, Liu Y, Liu L L, Yu B, Zhang G F, Xiao L T, Jia S T 2015 Photon. Res. 3 24

    [28]

    Mobli M, Hoch J C 2014 Prog. Nucl. Magn. Reson. Spectrosc. 83 21

    [29]

    He W J, Qin C B, Qiao Z X, Zhang G F, Xiao L T, Jia S T 2016 Carbon 109 264

  • [1] 李唯, 符婧, 杨贇贇, 何济洲. 光子驱动量子点制冷机. 物理学报, 2019, 68(22): 220501. doi: 10.7498/aps.68.20191091
    [2] 李天信, 翁钱春, 鹿建, 夏辉, 安正华, 陈张海, 陈平平, 陆卫. 量子点操控的光子探测和圆偏振光子发射. 物理学报, 2018, 67(22): 227301. doi: 10.7498/aps.67.20182049
    [3] 乔志星, 秦成兵, 贺文君, 弓亚妮, 张晓荣, 张国峰, 陈瑞云, 高岩, 肖连团, 贾锁堂. 通过光致还原调制氧化石墨烯寿命并用于微纳图形制备. 物理学报, 2018, 67(6): 066802. doi: 10.7498/aps.67.20172331
    [4] 赵瑞通, 梁瑞生, 王发强. 电子自旋辅助实现光子偏振态的量子纠缠浓缩. 物理学报, 2017, 66(24): 240301. doi: 10.7498/aps.66.240301
    [5] 王早, 张国峰, 李斌, 陈瑞云, 秦成兵, 肖连团, 贾锁堂. 利用N型半导体纳米材料抑制单量子点的荧光闪烁特性. 物理学报, 2015, 64(24): 247803. doi: 10.7498/aps.64.247803
    [6] 吴建芳, 张国峰, 陈瑞云, 秦成兵, 肖连团, 贾锁堂. 界面电子转移对量子点荧光闪烁行为的影响. 物理学报, 2014, 63(16): 167302. doi: 10.7498/aps.63.167302
    [7] 毕长虹, 孟庆裕. CaWO4:Sm3+荧光粉的发光性质及其能量传递机理. 物理学报, 2013, 62(19): 197804. doi: 10.7498/aps.62.197804
    [8] 万文博, 华灯鑫, 乐静, 刘美霞, 曹宁. 激光诱导叶绿素荧光寿命的测量及其特性分析. 物理学报, 2013, 62(19): 190601. doi: 10.7498/aps.62.190601
    [9] 任洪亮. 有限远共轭显微镜光镊设计和误差分析. 物理学报, 2013, 62(10): 100701. doi: 10.7498/aps.62.100701
    [10] 任洪亮, 丁攀峰, 李小燕. 光镊轴向阱位操控及器件安装误差对径向阱位操控的影响. 物理学报, 2012, 61(21): 210701. doi: 10.7498/aps.61.210701
    [11] 古丽姗, 王东升, 彭勇刚, 郑雨军. 单量子点在双脉冲激发下偏振光子发射的统计特性. 物理学报, 2011, 60(8): 084207. doi: 10.7498/aps.60.084207
    [12] 彭勇刚, 张西忠, 张兆玉, 郑雨军. 单量子点在连续外场激发下发射光子性质的理论研究. 物理学报, 2010, 59(3): 1791-1796. doi: 10.7498/aps.59.1791
    [13] 高当丽, 张翔宇, 张正龙, 徐良敏, 雷瑜, 郑海荣. 调控声子提高Tm3+掺杂体系的频率上转换荧光. 物理学报, 2009, 58(9): 6108-6112. doi: 10.7498/aps.58.6108
    [14] 汪 敏, 岑豫皖, 胡小方, 余晓流, 朱佩平. 同步辐射计算机断层技术光源误差机理分析. 物理学报, 2008, 57(10): 6202-6206. doi: 10.7498/aps.57.6202
    [15] 邓宇翔, 颜晓红, 唐娜斯. 量子点环的电子输运研究. 物理学报, 2006, 55(4): 2027-2032. doi: 10.7498/aps.55.2027
    [16] 苗 壮, 李善锋, 张庆瑜. Y共掺对掺Er硅酸盐玻璃光致荧光及荧光寿命的影响. 物理学报, 2006, 55(8): 4321-4326. doi: 10.7498/aps.55.4321
    [17] 刘立新, 屈军乐, 林子扬, 陈丹妮, 许改霞, 胡 涛, 郭宝平, 牛憨笨. 双光子激发时间分辨荧光光谱测量技术. 物理学报, 2006, 55(12): 6281-6286. doi: 10.7498/aps.55.6281
    [18] 林子扬, 付 哲, 刘立新, 胡 涛, 屈军乐, 郭宝平, 牛憨笨. 双光子阵列点激发同时多维荧光信息的处理. 物理学报, 2006, 55(12): 6701-6707. doi: 10.7498/aps.55.6701
    [19] 周慧君, 程木田, 刘绍鼎, 王取泉, 詹明生, 薛其坤. 各向异性量子点单光子发射的高偏振度特性. 物理学报, 2005, 54(9): 4141-4145. doi: 10.7498/aps.54.4141
    [20] 王茜蒨, 魏光辉. 机油类产品激光诱导荧光时间特性的研究. 物理学报, 2002, 51(5): 1031-1034. doi: 10.7498/aps.51.1031
计量
  • 文章访问数:  6294
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-05
  • 修回日期:  2018-11-07
  • 刊出日期:  2019-01-05

/

返回文章
返回