搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种无需定标的地基激光雷达气溶胶消光系数精确反演方法

刘厚通 毛敏娟

引用本文:
Citation:

一种无需定标的地基激光雷达气溶胶消光系数精确反演方法

刘厚通, 毛敏娟

An accurate inversion method of aerosol extinction coefficient about ground-based lidar without needing calibration

Liu Hou-Tong, Mao Min-Juan
PDF
HTML
导出引用
  • 如何对低云下雾霾的激光雷达探测数据进行准确定标, 一直是米散射激光雷达数据反演中一个有待解决的问题. 对于低云和雾霾同时出现的天气, 激光很难穿透云层, 不能利用大气清洁层对激光雷达信号定标. 而对于探测高度小于6 km的便携式米散射激光雷达, 由于探测高度较低, 也很难利用大气清洁层对激光雷达数据进行定标. 本文根据Fernald前向积分方程的特点, 提出了一种气溶胶消光系数迭代算法. 通过对反演过程进行特定设置, 每经过一次迭代, 利用气溶胶消光系数迭代算法得到的气溶胶消光系数反演值与其真实值之间的差值就会相应减小. 经过几次迭代后, 气溶胶消光系数反演值与真实值之间的差值就会小到可以忽略不计. 初步反演结果表明: 利用气溶胶消光系数迭代算法, 无需对激光雷达探测数据定标就能精确反演出气溶胶消光系数廓线.
    How to accurately calibrate the lidar data about haze in the presence of some cloud layers over the haze has always been a subject to be solved for data inversion of Mie scattering lidar. It is difficult for laser to penetrate the haze and clouds simultaneously, so the backscattering signal of lidar cannot be calibrated by using a clear air layer when the haze is under the low clouds. For the portable Mie scattering lidar with a detecting range of less than 6 km, it is also difficult to calibrate the lidar signals by using a clear air layer. An iterative algorithm for aerosol extinction coefficient is proposed based on the characteristics of the Fernald forward integral equation in this paper. By specific settings for the inversion process, the difference between the inversion value and the expected one of aerosol extinction coefficient is reduced after each iteration. After several iterations, the difference between the inversion value and the expected one of aerosol extinction coefficient is small enough to be negligible.The disadvantage of the iterative algorithm for aerosol extinction coefficient is that the inversion results are affected by the overlap factor of lidar. The errors of lidar overlap factor measured experimentally at different times are slightly different. However, the influence about the overlap factor of lidar measured experimentally at different times on the inversion results is slightly different when the iterative algorithm for aerosol extinction coefficient is used to calculate aerosol extinction coefficient.The results of preliminary calculation show that the iterative algorithm of aerosol extinction coefficient can accurately reproduce aerosol extinction coefficient profile without needing calibration of the lidar data. For the haze detection signal that cannot be calibrated by a clear air layer, the vertical distribution of the haze extinction coefficient can be accurately retrieved by the iterative algorithm for aerosol extinction coefficients. The vertical distribution of aerosol extinction coefficients can also be accurately retrieved by using the iterative algorithm of aerosol extinction coefficients for the Mie backscattering lidar data with the measuring height less than 6 km. Through comparative analysis and research, it is found that for the same lidar data, the aerosol extinction coefficient obtained by the iterative algorithm for aerosol extinction coefficient is closer to the actual value than that by the slope method.
      通信作者: 刘厚通, houtong6@ahut.edu.cn ; 毛敏娟, mayammj@mail.ustc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 41075027, 41475134)资助的课题.
      Corresponding author: Liu Hou-Tong, houtong6@ahut.edu.cn ; Mao Min-Juan, mayammj@mail.ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41075027, 41475134).
    [1]

    孙国栋, 秦来安, 张巳龙, 何枫, 谭逢富, 靖旭, 侯再红 2018 物理学报 67 054205Google Scholar

    Sun G D, Qin L A, Zhang S L, He F, Tan F F, Jing X, Hou Z H 2018 Acta Phys. Sin. 67 054205Google Scholar

    [2]

    迟如利, 吴德成, 刘博, 周军 2009 光谱学与光谱分析 29 001468

    Chi R L, Wu D C, Liu B, Zhou J 2009 Spectrosc. Spect. Anal. 29 001468

    [3]

    Lefrere J, Pelon J, Cahen C, Hauchecorne A, Flamant P 1981 Appl. Opt. 20 A70Google Scholar

    [4]

    Ansmann A, Wandinger U, Riebesell M, Weitkamp C, Michaelis W 1992 Appl. Opt. 31 7113Google Scholar

    [5]

    陈莎莎, 徐青山, 徐赤东, 余东升, 陈小威 2017 光学学报 37 9

    Chen S S, Xu Q S, Xu C D, Yu D S, Chen X W 2017 Acta Opt. Sin. 37 9

    [6]

    Huang X Y, Yang X W, Geng F H, Zhang H, He Q S, Bu L B 2010 J. Opt. Soc. Korea 14 185Google Scholar

    [7]

    Hee W S, Khor W Y, Lim H S, Jafri M Z M 2015 AIP Conference Proceedings Kuala Lumpur, November 18–19, 2014 040015

    [8]

    Liang M, Peng G, Yang Y, Zheng K 2017 Opt. Express 25 A628Google Scholar

    [9]

    Klett J D 1981 Appl. Opt. 20 211Google Scholar

    [10]

    Russell P B, Swissler T J, Mccormick M P 1979 Appl. Opt. 8 3873

    [11]

    Chiang C W, Das S K, Nee J B 2008 J. Quant. Spectrosc. Radiat. Transfer 109 1187Google Scholar

    [12]

    NOAA U, Force U A 1976 US Standard Atmosphere

    [13]

    Liu H T, Wang Z Z, Zhao J X, Ma J J 2018 Curr. Opt. Photon. 2 119

    [14]

    Salem E 2007 J. Mod. Opt. 42 1439

    [15]

    刘厚通, 陈良富, 苏林 2011 物理学报 60 064204Google Scholar

    Liu H T, Chen L F, Su L 2011 Acta Phys. Sin. 60 064204Google Scholar

    [16]

    Fernald F G 1984 Appl. Opt. 23 652Google Scholar

    [17]

    Xian J H, Han Y L, Huang S Y, Sun D S, Zheng J, Han F, Zhou A R, Yang S C, Xu W J, Song Q C, Wei L F, Tan Q Z, Li X Z 2018 Opt. Express 26 34853Google Scholar

    [18]

    Wong M S, Qin K, Lian H, Campbell J R, Lee K H, Sheng S J 2017 Atmos. Environ. 154 189Google Scholar

    [19]

    Wang J, Zhang T, Liu W, Liu J, Wan X 2018 OSA Technical Digest (Optical Society of America, 2018) Singapore November 5–8, 2018 ET3A.1.

    [20]

    狄慧鸽, 华灯鑫, 王玉峰, 闫庆 2013 物理学报 62 094215

    Di H G, Hua D X, Wang Y F, Yan Q 2013 Acta Phys. Sin. 62 094215

  • 图 1  雾霾的激光雷达距离校正回波信号

    Fig. 1.  The range corrected lidar signal about fog and haze.

    图 2  大气透过率初始值与第一次迭代值之间的关系

    Fig. 2.  The relationship between the initial values and the first iterative values of atmospheric transmittance.

    图 3  利用气溶胶消光系数迭代算法反演得到的气溶胶消光系数廓线

    Fig. 3.  The aerosol extinction coefficient profiles retrieved by the iterative algorithm of aerosol extinction coefficient.

    图 4  米散射激光雷达距离校正信号

    Fig. 4.  The range corrected lidar signal of the Mie scattering lidar.

    图 5  利用气溶胶消光系数迭代算法与其他定标方法获得的气溶胶消光系数比较

    Fig. 5.  Comparison of aerosol extinction coefficients obtained by the iterative algorithm of aerosol extinction coefficient and other calibration methods.

    图 6  激光雷达几何重叠校正因子的相对误差

    Fig. 6.  The relative errors of lidar overlap function.

    图 7  不同的激光雷达几何重叠因子误差所对应的激光雷达距离校正信号

    Fig. 7.  The range corrected lidar signals corresponding to different errors of lidar geometric overlap function.

    图 8  几何重叠因子误差对气溶胶消光系数反演值的影响

    Fig. 8.  The influence of lidar overlap function error on the retrievals of aerosol extinction coefficients.

  • [1]

    孙国栋, 秦来安, 张巳龙, 何枫, 谭逢富, 靖旭, 侯再红 2018 物理学报 67 054205Google Scholar

    Sun G D, Qin L A, Zhang S L, He F, Tan F F, Jing X, Hou Z H 2018 Acta Phys. Sin. 67 054205Google Scholar

    [2]

    迟如利, 吴德成, 刘博, 周军 2009 光谱学与光谱分析 29 001468

    Chi R L, Wu D C, Liu B, Zhou J 2009 Spectrosc. Spect. Anal. 29 001468

    [3]

    Lefrere J, Pelon J, Cahen C, Hauchecorne A, Flamant P 1981 Appl. Opt. 20 A70Google Scholar

    [4]

    Ansmann A, Wandinger U, Riebesell M, Weitkamp C, Michaelis W 1992 Appl. Opt. 31 7113Google Scholar

    [5]

    陈莎莎, 徐青山, 徐赤东, 余东升, 陈小威 2017 光学学报 37 9

    Chen S S, Xu Q S, Xu C D, Yu D S, Chen X W 2017 Acta Opt. Sin. 37 9

    [6]

    Huang X Y, Yang X W, Geng F H, Zhang H, He Q S, Bu L B 2010 J. Opt. Soc. Korea 14 185Google Scholar

    [7]

    Hee W S, Khor W Y, Lim H S, Jafri M Z M 2015 AIP Conference Proceedings Kuala Lumpur, November 18–19, 2014 040015

    [8]

    Liang M, Peng G, Yang Y, Zheng K 2017 Opt. Express 25 A628Google Scholar

    [9]

    Klett J D 1981 Appl. Opt. 20 211Google Scholar

    [10]

    Russell P B, Swissler T J, Mccormick M P 1979 Appl. Opt. 8 3873

    [11]

    Chiang C W, Das S K, Nee J B 2008 J. Quant. Spectrosc. Radiat. Transfer 109 1187Google Scholar

    [12]

    NOAA U, Force U A 1976 US Standard Atmosphere

    [13]

    Liu H T, Wang Z Z, Zhao J X, Ma J J 2018 Curr. Opt. Photon. 2 119

    [14]

    Salem E 2007 J. Mod. Opt. 42 1439

    [15]

    刘厚通, 陈良富, 苏林 2011 物理学报 60 064204Google Scholar

    Liu H T, Chen L F, Su L 2011 Acta Phys. Sin. 60 064204Google Scholar

    [16]

    Fernald F G 1984 Appl. Opt. 23 652Google Scholar

    [17]

    Xian J H, Han Y L, Huang S Y, Sun D S, Zheng J, Han F, Zhou A R, Yang S C, Xu W J, Song Q C, Wei L F, Tan Q Z, Li X Z 2018 Opt. Express 26 34853Google Scholar

    [18]

    Wong M S, Qin K, Lian H, Campbell J R, Lee K H, Sheng S J 2017 Atmos. Environ. 154 189Google Scholar

    [19]

    Wang J, Zhang T, Liu W, Liu J, Wan X 2018 OSA Technical Digest (Optical Society of America, 2018) Singapore November 5–8, 2018 ET3A.1.

    [20]

    狄慧鸽, 华灯鑫, 王玉峰, 闫庆 2013 物理学报 62 094215

    Di H G, Hua D X, Wang Y F, Yan Q 2013 Acta Phys. Sin. 62 094215

  • [1] 张鑫源, 胡以华, 谌诗洋, 方佳节, 王一程, 刘一凡, 韩飞. 公里级激光反射层析实验和碎片质心估计. 物理学报, 2022, 71(11): 114205. doi: 10.7498/aps.71.20220205
    [2] 李明飞, 袁梓豪, 刘院省, 邓意成, 王学锋. 光纤相控阵稀疏排布优化算法对比. 物理学报, 2021, 70(8): 084205. doi: 10.7498/aps.70.20201768
    [3] 冯帅, 常军, 胡瑶瑶, 吴昊, 刘鑫. 偏振成像激光雷达与短波红外复合光学接收系统设计与分析. 物理学报, 2020, 69(24): 244202. doi: 10.7498/aps.69.20200920
    [4] 孙国栋, 秦来安, 张巳龙, 何枫, 谭逢富, 靖旭, 侯再红. 一种测量大气消光系数边界值的新方法. 物理学报, 2018, 67(5): 054205. doi: 10.7498/aps.67.20172008
    [5] 狄慧鸽, 华杭波, 张佳琪, 张战飞, 华灯鑫, 高飞, 汪丽, 辛文辉, 赵恒. 高光谱分辨率激光雷达鉴频器的设计与分析. 物理学报, 2017, 66(18): 184202. doi: 10.7498/aps.66.184202
    [6] 张永燕, 吴九汇, 曾涛, 钟宏民. 利用激光光梯度力消除气溶胶雾霾粒子的机理研究. 物理学报, 2016, 65(7): 074203. doi: 10.7498/aps.65.074203
    [7] 饶志敏, 华灯鑫, 何廷尧, 乐静. 基于本征荧光的生物气溶胶测量激光雷达性能. 物理学报, 2016, 65(20): 200701. doi: 10.7498/aps.65.200701
    [8] 朱湘飞, 林兆祥, 刘林美, 邵君宜, 龚威. 温度压强对CO2吸收光谱的影响. 物理学报, 2014, 63(17): 174203. doi: 10.7498/aps.63.174203
    [9] 谭林秋, 华灯鑫, 汪丽, 高飞, 狄慧鸽. Mach-Zehnder干涉仪条纹成像多普勒激光雷达风速反演及视场展宽技术. 物理学报, 2014, 63(22): 224205. doi: 10.7498/aps.63.224205
    [10] 狄慧鸽, 华灯鑫, 王玉峰, 闫庆. 米散射激光雷达重叠因子及全程回波信号标定技术研究. 物理学报, 2013, 62(9): 094215. doi: 10.7498/aps.62.094215
    [11] 梁善勇, 王江安, 张峰, 吴荣华, 宗思光, 王雨虹, 王乐东. 基于舰船尾流激光雷达的Monte Carlo模型及方差消减方法研究. 物理学报, 2013, 62(1): 015205. doi: 10.7498/aps.62.015205
    [12] 梁善勇, 王江安, 张峰, 石晟玮, 马治国, 刘涛, 王雨虹. 基于尾流激光雷达的能量对消式大动态接收技术. 物理学报, 2012, 61(11): 110701. doi: 10.7498/aps.61.110701
    [13] 沈法华, 舒志峰, 孙东松, 王忠纯, 薛向辉, 陈廷娣, 窦贤康. Rayleigh散射Doppler激光雷达风场反演方法改进. 物理学报, 2012, 61(3): 030702. doi: 10.7498/aps.61.030702
    [14] 刘厚通, 陈良富, 苏林. Fernald前向积分用于机载激光雷达气溶胶后向散射系数反演的理论研究. 物理学报, 2011, 60(6): 064204. doi: 10.7498/aps.60.064204
    [15] 连天虹, 王石语, 过振, 李兵斌, 蔡德芳, 文建国. 用于激光雷达的相干合成光束研究. 物理学报, 2011, 60(12): 124208. doi: 10.7498/aps.60.124208
    [16] 沈法华, 舒志峰, 孙东松, 王忠纯, 薛向辉, 陈廷娣, 窦贤康. 瑞利散射多普勒激光雷达风场反演方法. 物理学报, 2011, 60(6): 060704. doi: 10.7498/aps.60.060704
    [17] 王敏, 胡顺星, 方欣, 汪少林, 曹开法, 赵培涛, 范广强, 王英俭. 激光雷达精确修正对流层目标定位误差. 物理学报, 2009, 58(7): 5091-5097. doi: 10.7498/aps.58.5091
    [18] 张改霞, 赵曰峰, 张寅超, 赵培涛. 激光雷达白天探测大气边界层气溶胶. 物理学报, 2008, 57(11): 7390-7395. doi: 10.7498/aps.57.7390
    [19] 洪光烈, 张寅超, 赵曰峰, 邵石生, 谭 锟, 胡欢陵. 探测大气中CO2的Raman激光雷达. 物理学报, 2006, 55(2): 983-987. doi: 10.7498/aps.55.983
    [20] 郭冠军, 邵 芸. 激光散斑效应对激光雷达探测性能的影响. 物理学报, 2004, 53(7): 2089-2093. doi: 10.7498/aps.53.2089
计量
  • 文章访问数:  9371
  • PDF下载量:  180
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-09
  • 修回日期:  2019-01-31
  • 上网日期:  2019-03-23
  • 刊出日期:  2019-04-05

/

返回文章
返回