搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光学微腔中一维费米气的磁性关联特性

冯彦林 樊景涛 陈刚 贾锁堂

引用本文:
Citation:

光学微腔中一维费米气的磁性关联特性

冯彦林, 樊景涛, 陈刚, 贾锁堂

Magnetic properties of one-dimensional Fermi gases in an optical cavity

Feng Yan-Lin, Fan Jing-Tao, Chen Gang, Jia Suo-Tang
PDF
HTML
导出引用
  • 对于准一维两组分费米气与光学微腔耦合的系统, 证明了微腔光子的超辐射可以驱动原子系统的磁性转变, 该磁性转变与原子的失谐以及费米子的填充数密切相关. 对于无相互作用原子气, 在超辐射相区内平均场近似合理. 基于该近似, 分析了不同的填充和失谐情况下体系的静态自旋结构因子, 由此刻画出腔光子协助的磁性关联转变, 并得到了依赖于微腔参数的相图. 最后, 对可行的实验参数做了相关讨论.
    In this work we show that the superradiance of the cavity photons can give rise to a magnetic transformation for the atomic system when the quasi one-dimensional Fermi gases are coupled to an optical cavity. This magnetic transformation has a close relationship with the atomic detuning and the filling number. When the interaction between the atoms is neglected, the mean-field approximation may be used in the superradiant phase. In this approximation, we analyze the static spin structure factors of the system with different filling numbers and atomic detuning. Then we characterize the cavity photons-assisted magnetic transformation and obtain the phase diagrams which are dependent on the cavity parameters. Finally, the feasible experimental parameters of our results are also discussed.
      通信作者: 陈刚, chengang971@163.com
    • 基金项目: 国家重点研发计划(批准号: 2017YFA0304203)、国家自然科学基金(批准号: 11674200, 11804204)、教育部长江学者和创新团队发展计划(批准号: IRT13076)和山西省“1331工程”重点学科建设计划资助的课题.
      Corresponding author: Chen Gang, chengang971@163.com
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0304203), the National Natural Science Foundation of China (Grant Nos. 11674200, 11804204), the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT13076), and the Fund for Shanxi “1331 Project” Key Subjects Construction, China.
    [1]

    Bloch I, Dalibard J, Zwerger W 2008 Rev. Mod. Phys. 80 885Google Scholar

    [2]

    Ritsch H, Demokos P, Brennecke F, Esslinger T 2013 Rev. Mod. Phys. 85 553Google Scholar

    [3]

    Baumann K, Guerlin C, Brennecke F, Esslinger T 2010 Nature (London) 464 1301Google Scholar

    [4]

    Landig R, Hruby L, Dogra N, Landini M, Mottl R, Donner T, Esslinger T 2016 Nature (London) 532 476Google Scholar

    [5]

    Hruby L, Dogra N, Landini M, Donner T, Esslinger T 2018 PNAS 115 3279Google Scholar

    [6]

    Lénard J, Morales A, Zupancic P, Esslinger T, Donner T 2017 Nature (London) 543 87Google Scholar

    [7]

    Lénard J, Morales A, Zupancic P, Donner T, Esslinger T 2017 Science 358 1415Google Scholar

    [8]

    Caballero-Benitez S F, Mekhov I B 2015 Phys. Rev. Lett. 115 243604Google Scholar

    [9]

    Dogra N, Brennecke F, Huber S D, Donner T 2016 Phys. Rev. A 94 023632Google Scholar

    [10]

    Chen Y, Yu Z, Zhai H 2016 Phys. Rev. A 93 041601(R)Google Scholar

    [11]

    Pan J S, Liu X J, Zhang W, Yi W, Guo G C 2015 Phys. Rev. Lett. 115 045303Google Scholar

    [12]

    Luo X W, Zhang C 2018 Phys. Rev. Lett. 120 263202Google Scholar

    [13]

    谷红明, 黄永清, 王欢欢, 武刚, 段晓峰, 刘凯, 任晓敏 2018 物理学报 67 144201Google Scholar

    Gu H M, Huang Y Q, Wang H H, Wu G, Duan X F, Liu K, Ren X M 2018 Acta Phys. Sin. 67 144201Google Scholar

    [14]

    Parsons M F, Mazurenko A, Chiu C S, Ji G, Greif D, Greiner M 2016 Science 353 1253Google Scholar

    [15]

    Boll M, Hilker T A, Salomon G, Omran A, Nespolo J, Pollet L, Bloch I, Gross C 2016 Science 353 1257Google Scholar

    [16]

    Cheuk L W, Nichols M A, Lawrence K R, Okan M, Zhang H, Khatami E, Trivedi N, Paiva T, Rigol M, Zwierlein M W 2016 Science 353 1260Google Scholar

    [17]

    Hilker T A, Salomon G, Grusdt F, Omran A, Boll M, Demler E, Bloch I, Gross C 2017 Science 357 484Google Scholar

    [18]

    Salomon G, Koepsell J, Vijayan J, Hilker T A, Nespolo J, Pollet L, Bloch I, Gross C 2019 Nature 565 56

    [19]

    Mazurenko A, Chiu C S, Ji G, Parsons M F, Kanasz-Nagy M, Schmidt R, Grusdt F, Demler E, Greif D, Greiner M 2017 Nature 545 462Google Scholar

    [20]

    徐志君, 刘夏吟 2011 物理学报 60 120305Google Scholar

    Xu Z J, Liu X Y 2011 Acta Phys. Sin. 60 120305Google Scholar

    [21]

    秦帅锋, 郑公平, 马骁, 李海燕, 童晶晶, 杨博 2013 物理学报 62 110304Google Scholar

    Qin S F, Zheng G P, Ma X, Li H Y, Tong J J, Yang B 2013 Acta Phys. Sin. 62 110304Google Scholar

    [22]

    Sun N, Zhang P F, Zhai H 2018 arXiv: 1808 03966v1 [cond-mat.quant-gas]

    [23]

    Fan J T, Zhou X F, Zheng W, Yi W, Chen G, Jia S T 2018 Phys. Rev. A 98 043613Google Scholar

    [24]

    Giuliani G, Vignale G 2005 Quantum Theory of the Electron Liquid (Cambridge: Cambridge University Press) pp29-36

    [25]

    Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698Google Scholar

    [26]

    Peierls R E 1955 Quantum Theory of Solids (Oxford: Clarendon Press) p108

    [27]

    Ogata M, Shiba H 1990 Phys. Rev. B 41 2326Google Scholar

    [28]

    Costa N C, Mendes-Santos T, Paiva T, Santos R R dos, Scalettar R T 2016 Phys. Rev. B 94 155107Google Scholar

    [29]

    Chang C-C, Zhang S 2008 Phys. Rev. B 78 165101Google Scholar

    [30]

    Hart R A, Duarte P M, Yang T L, Liu X, Paiva T, Khatami E, Scalettar R T, Trivedi N, Huse D A, Hulet R G 2015 Nature (London) 519 211Google Scholar

    [31]

    Liu X-J, Law K T, Ng T K 2014 Phys. Rev. Lett. 112 086401Google Scholar

    [32]

    Klinder J, Keβler H, Wolke M, Mathey L, Hemmerich A 2015 PNAS 112 3290Google Scholar

    [33]

    Landig R, Brennecke F, Mottl R, Donner T, Esslinger T 2015 Nat. Commun. 6 7046Google Scholar

  • 图 1  (a)超冷费米气沿着腔轴$\hat x$方向被俘获在准一维背景光学晶格中, 费米气被两束圆偏振的横向(沿着$\hat z$方向)抽运激光驱动, 腔模由一束线偏振的纵向(沿着$\hat x$方向)驱动光驱动; (b)费米子的能级跃迁图, 图中相关的跃迁过程和符号的定义见正文

    Fig. 1.  (a) The ultracold fermions are trapped in a quasi-one-dimensional background optical lattice along the cavity axis $\hat x$. These fermions are pumped by two circular-polarized transverse (along $\hat z$) lasers and the cavity mode is driven by a linear-polarized longitudinal (along $\hat x$) laser. (b) the atomic energy levels and their transition. See main text for the corresponding transition processes and the definition of the labels.

    图 2  a)蓝失谐的情况$\Delta > 0$, 光场$\left| \alpha \right|$在不同的晶格填充下随耦合强度$\eta_ {\rm{A}}$的变化. 图中其他参数的选择: ${V_0} = 5{E_{\rm{R}}}$, $\kappa = 100{E_{\rm{R}}}$, ${\Delta _{\rm{c}}} = - 10{E_{\rm{R}}}$, ${k_{\rm{B}}}T = {E_{\rm{R}}}/200$$U = 5{E_{\rm{R}}}$; (b)红失谐的情况$\Delta < 0$, 光场$\left| \alpha \right|$在不同的晶格填充下随耦合强度$\eta_ {\rm{A}}$的变化. 图中其它参数的选择: ${V_0} = - 5{E_{\rm{R}}}$, $\kappa = 100{E_{\rm{R}}}$, ${\Delta _{\rm{c}}} = - 100{E_{\rm{R}}}$, ${k_{\rm{B}}}T = {E_{\rm{R}}}/200$$U = - {E_{\rm{R}}}$. 我们考虑的具有80个格点的晶格对应不同的填充, 其中kF/ER不同的值对应不同的填充, kF为费米动量

    Fig. 2.  (a) The cavity field $\left| \alpha \right|$ for systems in different fillings with $\Delta > 0$. The plotted parameters are chosen as ${V_0} = 5{E_{\rm{R}}}$, $\kappa = 100{E_{\rm{R}}}$, ${\Delta _{\rm{c}}} = - 10{E_{\rm{R}}}$, ${k_{\rm{B}}}T = {E_{\rm{R}}}/200$, and $U = 5{E_{\rm{R}}}$. (b) the cavity field $\left| \alpha \right|$ for systems in different fillings with $\Delta < 0$. The plotted parameters are chosen as ${V_0} = - 5{E_{\rm{R}}}$, $\kappa = 100{E_{\rm{R}}}$, ${\Delta _{\rm{c}}} = - 100{E_{\rm{R}}}$, ${k_{\rm{B}}}T = {E_{\rm{R}}}/200$, and $U = - {E_{\rm{R}}}$. We consider a lattice of sites 80 with different fillings.

    图 3  静态自旋结构因子${S_z}\left( k \right)$ (a) ${k_{\rm{F}}}/{E_{\rm{R}}}=3/8$; (b) ${k_{\rm{F}}}/{E_{\rm{R}}}=1/2$; (c) ${k_{\rm{F}}}/{E_{\rm{R}}}=5/8$. (图中对应的其它参数的选择与图2(a)中一致)

    Fig. 3.  The spin structure factors ${S_z}\left( k \right)$ for systems in different fillings: (a) ${k_{\rm{F}}}/{E_{\rm{R}}}=3/8$; (b) ${k_{\rm{F}}}/{E_{\rm{R}}}=1/2$; (c) ${k_{\rm{F}}}/{E_{\rm{R}}}=5/8$ (The plotted parameters are the same as those in Fig. 2(a)).

    图 4  静态自旋结构因子${S_z}\left( k \right)$ (a) ${k_{\rm{F}}}/{E_{\rm{R}}}=3/8$; (b) ${k_{\rm{F}}}/{E_{\rm{R}}}=1/2$; (c) ${k_{\rm{F}}}/{E_{\rm{R}}}=5/8$(图中对应的其他参数的选择与图2(b)中一致)

    Fig. 4.  The spin structure factors ${S_z}\left( k \right)$ for systems in different fillings: (a) ${k_{\rm{F}}}/{E_{\rm{R}}}=3/8$; (b) ${k_{\rm{F}}}/{E_{\rm{R}}}=1/2$; (c) ${k_{\rm{F}}}/{E_{\rm{R}}}=5/8$ (The plotted parameters are the same as those in Fig. 2(b)).

    图 5  (a)蓝失谐时${k_{\rm{F}}} - {\eta _{\rm{A}}}$平面上的相图(M, AF-SR和FM-SR分别代表金属相、反铁磁关联的超辐射相和铁磁关联的超辐射相, 其它参数的选择与图2(a)相同); (b)红失谐时${k_{\rm{F}}} - {\eta _A}$平面上的相图(AF-SR代表反铁磁关联的超辐射相, 对应的其他参数的选择与图2(b)中一致)

    Fig. 5.  (a) The phase diagram in the ${k_{\rm{F}}} - {\eta _A}$ plane for the system with blue-detuned atomic detuning (M, AF-SR, and FM-SR correspond to metallic phase, antiferromagnetic superradiant phase, and ferromagnetic superradiant phase, respectively. The plotted parameters are the same as those in Fig. 2(a)); (b) the phase diagram in the ${k_{\rm{F}}} - {\eta _{\rm{A}}}$ plane for the system with red-detuned atomic detuning (AF-SR corresponds to the antiferromagnetic superradiant phase. The plotted parameters are the same as those in Fig. 2(b)).

  • [1]

    Bloch I, Dalibard J, Zwerger W 2008 Rev. Mod. Phys. 80 885Google Scholar

    [2]

    Ritsch H, Demokos P, Brennecke F, Esslinger T 2013 Rev. Mod. Phys. 85 553Google Scholar

    [3]

    Baumann K, Guerlin C, Brennecke F, Esslinger T 2010 Nature (London) 464 1301Google Scholar

    [4]

    Landig R, Hruby L, Dogra N, Landini M, Mottl R, Donner T, Esslinger T 2016 Nature (London) 532 476Google Scholar

    [5]

    Hruby L, Dogra N, Landini M, Donner T, Esslinger T 2018 PNAS 115 3279Google Scholar

    [6]

    Lénard J, Morales A, Zupancic P, Esslinger T, Donner T 2017 Nature (London) 543 87Google Scholar

    [7]

    Lénard J, Morales A, Zupancic P, Donner T, Esslinger T 2017 Science 358 1415Google Scholar

    [8]

    Caballero-Benitez S F, Mekhov I B 2015 Phys. Rev. Lett. 115 243604Google Scholar

    [9]

    Dogra N, Brennecke F, Huber S D, Donner T 2016 Phys. Rev. A 94 023632Google Scholar

    [10]

    Chen Y, Yu Z, Zhai H 2016 Phys. Rev. A 93 041601(R)Google Scholar

    [11]

    Pan J S, Liu X J, Zhang W, Yi W, Guo G C 2015 Phys. Rev. Lett. 115 045303Google Scholar

    [12]

    Luo X W, Zhang C 2018 Phys. Rev. Lett. 120 263202Google Scholar

    [13]

    谷红明, 黄永清, 王欢欢, 武刚, 段晓峰, 刘凯, 任晓敏 2018 物理学报 67 144201Google Scholar

    Gu H M, Huang Y Q, Wang H H, Wu G, Duan X F, Liu K, Ren X M 2018 Acta Phys. Sin. 67 144201Google Scholar

    [14]

    Parsons M F, Mazurenko A, Chiu C S, Ji G, Greif D, Greiner M 2016 Science 353 1253Google Scholar

    [15]

    Boll M, Hilker T A, Salomon G, Omran A, Nespolo J, Pollet L, Bloch I, Gross C 2016 Science 353 1257Google Scholar

    [16]

    Cheuk L W, Nichols M A, Lawrence K R, Okan M, Zhang H, Khatami E, Trivedi N, Paiva T, Rigol M, Zwierlein M W 2016 Science 353 1260Google Scholar

    [17]

    Hilker T A, Salomon G, Grusdt F, Omran A, Boll M, Demler E, Bloch I, Gross C 2017 Science 357 484Google Scholar

    [18]

    Salomon G, Koepsell J, Vijayan J, Hilker T A, Nespolo J, Pollet L, Bloch I, Gross C 2019 Nature 565 56

    [19]

    Mazurenko A, Chiu C S, Ji G, Parsons M F, Kanasz-Nagy M, Schmidt R, Grusdt F, Demler E, Greif D, Greiner M 2017 Nature 545 462Google Scholar

    [20]

    徐志君, 刘夏吟 2011 物理学报 60 120305Google Scholar

    Xu Z J, Liu X Y 2011 Acta Phys. Sin. 60 120305Google Scholar

    [21]

    秦帅锋, 郑公平, 马骁, 李海燕, 童晶晶, 杨博 2013 物理学报 62 110304Google Scholar

    Qin S F, Zheng G P, Ma X, Li H Y, Tong J J, Yang B 2013 Acta Phys. Sin. 62 110304Google Scholar

    [22]

    Sun N, Zhang P F, Zhai H 2018 arXiv: 1808 03966v1 [cond-mat.quant-gas]

    [23]

    Fan J T, Zhou X F, Zheng W, Yi W, Chen G, Jia S T 2018 Phys. Rev. A 98 043613Google Scholar

    [24]

    Giuliani G, Vignale G 2005 Quantum Theory of the Electron Liquid (Cambridge: Cambridge University Press) pp29-36

    [25]

    Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698Google Scholar

    [26]

    Peierls R E 1955 Quantum Theory of Solids (Oxford: Clarendon Press) p108

    [27]

    Ogata M, Shiba H 1990 Phys. Rev. B 41 2326Google Scholar

    [28]

    Costa N C, Mendes-Santos T, Paiva T, Santos R R dos, Scalettar R T 2016 Phys. Rev. B 94 155107Google Scholar

    [29]

    Chang C-C, Zhang S 2008 Phys. Rev. B 78 165101Google Scholar

    [30]

    Hart R A, Duarte P M, Yang T L, Liu X, Paiva T, Khatami E, Scalettar R T, Trivedi N, Huse D A, Hulet R G 2015 Nature (London) 519 211Google Scholar

    [31]

    Liu X-J, Law K T, Ng T K 2014 Phys. Rev. Lett. 112 086401Google Scholar

    [32]

    Klinder J, Keβler H, Wolke M, Mathey L, Hemmerich A 2015 PNAS 112 3290Google Scholar

    [33]

    Landig R, Brennecke F, Mottl R, Donner T, Esslinger T 2015 Nat. Commun. 6 7046Google Scholar

  • [1] 张杰, 陈爱喜, 彭泽安. 基于双原子超-亚辐射态选择性驱动的空间定向关联辐射. 物理学报, 2024, 73(14): 144202. doi: 10.7498/aps.73.20240521
    [2] 焦宸, 简粤, 张爱霞, 薛具奎. 自旋-轨道耦合玻色-爱因斯坦凝聚体激发谱及其有效调控. 物理学报, 2023, 72(6): 060302. doi: 10.7498/aps.72.20222306
    [3] 吴瑾, 陆展鹏, 徐志浩, 郭利平. 由超辐射引起的迁移率边和重返局域化. 物理学报, 2022, 71(11): 113702. doi: 10.7498/aps.71.20212246
    [4] 施婷婷, 汪六九, 王璟琨, 张威. 自旋轨道耦合量子气体中的一些新进展. 物理学报, 2020, 69(1): 016701. doi: 10.7498/aps.69.20191241
    [5] 侯海燕, 姚慧, 李志坚, 聂一行. 磁性硅烯超晶格中电场调制的谷极化和自旋极化. 物理学报, 2018, 67(8): 086801. doi: 10.7498/aps.67.20180080
    [6] 李艳. 从光晶格中释放的超冷玻色气体密度-密度关联函数研究. 物理学报, 2014, 63(6): 066701. doi: 10.7498/aps.63.066701
    [7] 圣宗强, 舒良萍, 孟影, 胡继刚, 钱建发. 有效液滴模型对超铅区结团放射性的研究. 物理学报, 2014, 63(16): 162302. doi: 10.7498/aps.63.162302
    [8] 康艳霜, 孙宗利. 荷电流体中静电关联效应的有效势模型. 物理学报, 2014, 63(13): 136101. doi: 10.7498/aps.63.136101
    [9] 陈再高, 王建国, 王玥, 朱湘琴, 张殿辉, 乔海亮. 相对论返波管超辐射产生与辐射的数值模拟研究. 物理学报, 2014, 63(3): 038402. doi: 10.7498/aps.63.038402
    [10] 魏来明, 周远明, 俞国林, 高矿红, 刘新智, 林铁, 郭少令, 戴宁, 褚君浩, Austing David Guy. 高迁移率InGaAs/InP量子阱中的有效g因子. 物理学报, 2012, 61(12): 127102. doi: 10.7498/aps.61.127102
    [11] 徐志君, 刘夏吟. 光晶格中非相干超冷原子的密度关联效应. 物理学报, 2011, 60(12): 120305. doi: 10.7498/aps.60.120305
    [12] 周 蓉, 孙宝权, 阮学忠, 甘华东, 姬 扬, 王玮竹, 赵建华. 外磁场对(Ga,Mn)As有效g因子的影响. 物理学报, 2008, 57(8): 5244-5248. doi: 10.7498/aps.57.5244
    [13] 宋亚舞, 孙 华. 非磁性半导体异常磁电阻效应的有效介质理论. 物理学报, 2008, 57(11): 7178-7184. doi: 10.7498/aps.57.7178
    [14] 陆广成, 李增花, 左 维, 罗培燕. 热核物质中基态关联修正下的单核子势和核子有效质量. 物理学报, 2006, 55(1): 84-90. doi: 10.7498/aps.55.84
    [15] 王玉田, 庄岩, 江德生, 杨小平, 姜晓明, 武家杨, 修立松, 郑文莉. 双势垒超晶格结构的同步辐射及X射线双晶衍射研究. 物理学报, 1996, 45(10): 1709-1716. doi: 10.7498/aps.45.1709
    [16] 沈文忠, 李振亚. 具有单轴各向异性的磁性超晶格中的自旋波. 物理学报, 1992, 41(8): 1374-1379. doi: 10.7498/aps.41.1374
    [17] 熊小明, 陶瑞宝. 半导体超晶格中的有效弹性模量. 物理学报, 1988, 37(7): 1110-1118. doi: 10.7498/aps.37.1110
    [18] 马红孺, 蔡建华. 磁性金属超晶格中的自旋波. 物理学报, 1984, 33(3): 444-446. doi: 10.7498/aps.33.444
    [19] 秦运文. 关于辐射在双麦克斯韦等离子体中散射的结构因子. 物理学报, 1984, 33(4): 561-563. doi: 10.7498/aps.33.561
    [20] 陆全康, 陈国荣, 王钤, 熊小明, 金勇, 唐明. 辐射在各向异性等离子体中散射的结构因子. 物理学报, 1983, 32(5): 618-626. doi: 10.7498/aps.32.618
计量
  • 文章访问数:  6683
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-01
  • 修回日期:  2018-12-04
  • 上网日期:  2019-02-01
  • 刊出日期:  2019-02-20

/

返回文章
返回